Skip to main content

The Self-discipline Learning Model with Imported Backpropagation Algorithm

  • Conference paper
  • First Online:
  • 717 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 542))

Abstract

The electrocardiogram (ECG) has been proved to be the most common and effective method of studying cardiovascular disease because it is simple, non-invasive, and inexpensive. However, the differences between ECG signals are difficult to distinguish. In this paper, a model combining convolutional neural networks (CNN) with self-discipline learning (SDL) is proposed to realize the classification and identification of cardiac arrhythmia data. Comparison with a variety of deep learning frameworks based on the MIT-BIH arrhythmia dataset shows that, this model achieves a higher level of accuracy with less structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., Babaeizadeh, S.: Densely connected convolutional networks for detection of atrial fbrillation from short single-lead ECG recordings. J. Electrocardiol. 51(6), 18–21 (2018)

    Article  Google Scholar 

  2. Sardana, H.K.N., Kanwade, R., Tewary, S.: Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys. Eng. Sci. Med. 44, 1027–1048 (2021)

    Google Scholar 

  3. Bassiouni, M.M., El-Dahshan, E.-S., Khalefa, W., Salem, A.M.: Intelligent hybrid approaches for human ECG signals identification. SIViP 12, 1–9 (2018). https://doi.org/10.1007/s11760-018-1237-5

    Article  Google Scholar 

  4. Patro, K.K., Reddi, S.P.R., Khalelulla, S.K.E., Rajesh Kumar, P., Shankar, K.: ECG data optimization for biometric human recognition using statistical distributed machine learning algorithm. J. Supercomput. 76(2), 858–875 (2019). https://doi.org/10.1007/s11227-019-03022-1

    Article  Google Scholar 

  5. Sharma, P., Dinkar, S.K., Gupta, D.V.: A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals. Neural Comput. Appl. 33(19), 13123–13143 (2021). https://doi.org/10.1007/s00521-021-06005-7

    Article  Google Scholar 

  6. Arpitha, Y., Madhumathi, G.L., Balaji, N.: Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique. J. Ambient Intell. Humaniz. Comput. (2021)

    Google Scholar 

  7. Muthuvel, K., Anto, S., Alexander, T.J.: GABC based neuro-fuzzy classifier with hybrid features for ECG beat classification. Multimedia Tools Appl. 78(24), 35351–35372 (2019). https://doi.org/10.1007/s11042-019-08132-9

    Article  Google Scholar 

  8. Boostani, R., Sabeti, M., Omranian, S., Kouchaki, S.: ECG-based personal identification using empirical mode decomposition and Hilbert transform. Iranian J. Sci. Technol. Trans. Electr. Eng. 43(1), 67–75 (2018). https://doi.org/10.1007/s40998-018-0055-7

    Article  Google Scholar 

  9. Huang, J.S., Chen, B.Q., Zeng, N.Y., Cao X.C., Li, Y.: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks. J. Ambient Intell. Humaniz. Comput. (2020)

    Google Scholar 

  10. Che, C., Zhang, P.L., Zhu, M., Qu, Y., Jin, B.: Constrained transformer network for ECG signal processing and arrhythmia classification. BMC Med. Inform. Decis. Mak. 21, 184 (2021)

    Article  Google Scholar 

  11. Rashed-Al-Mahfuz, M., et al.: Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. Biomed. Eng. Lett. 11, 147–162 (2021)

    Google Scholar 

  12. Harrane, S., Belkhiri, M.: Classification of ECG heartbeats using deep neural networks. Res. Biomed. Eng. (2021)

    Google Scholar 

  13. Tung, H., Zheng, C., Mao, X.S., Qian, D.H.: Multi-lead ECG classification via an information-based attention convolutional neural network. J. Shanghai Jiaotong Univ. (Sci.) (2021)

    Google Scholar 

  14. Zhang, Y.F., Zhao, Z.D., Deng, Y.J., Zhang, X.H., Zhang, Y.: ECGID: a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model. Front. Inf. Technol. Electron. Eng. (2021)

    Google Scholar 

  15. Zeng, W., Yuan, C.: ECG arrhythmia classification based on variational mode decomposition, Shannon energy envelope and deterministic learning. Int. J. Mach. Learn. Cybern. 12(10), 2963–2988 (2021). https://doi.org/10.1007/s13042-021-01389-3

    Article  Google Scholar 

  16. Zhanquan, S., Chaoli, W., Engang, T., Zhong, Y.: ECG signal classification via combining hand-engineered features with deep neural network features. Multimedia Tools Appl. 81, 1–22 (2021). https://doi.org/10.1007/s11042-021-11523-6

    Article  Google Scholar 

  17. Alqudah, A.M., Qazan, S., Al-Ebbini, L., Alquran, H., Qasmieh, I.A.: ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures. J. Ambient Intell. Humaniz. Comput. (2021)

    Google Scholar 

  18. Subasi, A., Dogan, S., Tuncer, T.: A novel automated tower graph based ECG signal classification method with hexadecimal local adaptive binary pattern and deep learning. J. Ambient Intell. Humaniz. Comput. (2021)

    Google Scholar 

  19. Cui, J.F., Wang, L.X., He, X.M., Albuquerque, V.H.C.D., AlQahtani, S.A., Hassan, M.M.: Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia. Neural Comput. Appl. (2021)

    Google Scholar 

  20. Zhang, Y., Zhao, Z., Deng, Y., Zhang, X., Zhang, Y.: Heart biometrics based on ECG signal by sparse coding and bidirectional long short-term memory. Multimedia Tools Appl. 80(20), 30417–30438 (2020). https://doi.org/10.1007/s11042-020-09608-9

    Article  Google Scholar 

  21. Gu, Z.C., Liang, Y., Zhang, Z.X.: The modeling of SDL aiming at knowledge acquisition in automatic driving. arXiv:1812.03007v1 [cs.AI], 7 December 2018

  22. Gu, Z.C., Dong, L.: Distance formulas capable of unifying Euclidian space and probability space. arXiv:1801.01972v1 [cs.AI], 6 January 2018

  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  24. Gu, Z.C., Sun, X.Q., Sun, Y., Zhang, F.Q.: Probabilistic spatial clustering based on the Self Discipline Learning (SDL) model of autonomous learning. arXiv:2201.03449 [cs.LG], 7 January 2022

  25. MITBIH Homepage. https://www.physionet.org/content/mitdb/1.0.0/. Accessed 13 Jan 2022

  26. Murat, F., Yildırım, O., Talo, M., Baloglu, U.B., Demir, Y., Acharya, R.: Application of deep learning techniques for heartbeats detection using ECG signals analysis and review. Comput. Biol. Med. 120 (2020)

    Google Scholar 

  27. Khatibi, T., Rabinezhadsadatmahaleh, N.: Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection. Phys. Eng. Sci. Med. 43(1), 49–68 (2019). https://doi.org/10.1007/s13246-019-00814-w

    Article  Google Scholar 

  28. Madhavi, K.R., Kora, P., Reddy, L.V, Avanija J., SoujanyaK. L.S., Telagarapu, P.: Cardiac arrhythmia detection using dual-tree wavelet transform and convolutional neural network. Soft Comput. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqi Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, Z., Sun, X., Sun, Y. (2023). The Self-discipline Learning Model with Imported Backpropagation Algorithm. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_57

Download citation

Publish with us

Policies and ethics