Skip to main content

Understanding and Decomposing Control-Flow Loops in Business Process Models

  • Conference paper
  • First Online:
Business Process Management (BPM 2022)

Abstract

Business process models are usually described in a visual notation and reflect actual processes in systems. As a result, process models often are unstructured and cyclic. Unfortunately, unstructured and cyclic models are difficult to analyze and execute as research shows. Unstructuredness could be overcome using the existing studies, however, the analysis of cyclic models is still an open research problem. For this reason, this paper presents a decomposition of cyclic process models into sets of acyclic models. Together with a simple execution semantics for the acyclic models, the semantics of the decomposed model coincides with the original model if soundness is assumed. The decomposition can be achieved in a quadratic runtime complexity and gives the possibility to apply many existing analysis methodologies for acyclic process models. A short evaluation shows the feasibility of the approach.

The third author’s work was done during his PhD program at Inje University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/guybrushPrince/mojo.plan.loop, last visited March 2022.

  2. 2.

    https://web.archive.org/web/20131208132841/http://service-technology.org/publications/fahlandfjklvw_2009_bpm, last visited March 2022.

References

  1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Boston (1986)

    MATH  Google Scholar 

  2. Choi, Y., Ha, N.L., Kongsuwan, P., Han, K.H.: An alternative method for refined process structure trees (RPST). Bus. Process. Manag. J. 26(2), 613–629 (2020). https://doi.org/10.1108/BPMJ-11-2018-0319

    Article  Google Scholar 

  3. Choi, Y., Kongsuwan, P., Joo, C.M., Zhao, J.L.: Stepwise structural verification of cyclic workflow models with acyclic decomposition and reduction of loops. Data Knowl. Eng. 95, 39–65 (2015). https://doi.org/10.1016/j.datak.2014.11.003

    Article  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for soundness of business process models. In: Tenth IEEE International Enterprise Distributed Object Computing Conference (EDOC 2006), 16–20 October 2006, Hong Kong, China, pp. 116–128. IEEE Computer Society (2006). https://doi.org/10.1109/EDOC.2006.56

  6. Dumas, M., García-Bañuelosa, L., La Rosa, M., Ubaa, R.: Fast detection of exact clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2013). https://doi.org/10.1016/j.is.2012.07.002

    Article  Google Scholar 

  7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

    Book  Google Scholar 

  8. Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm. Formal Methods Syst. Des. 20(3), 285–310 (2002). https://doi.org/10.1023/A:1014746130920

    Article  MATH  Google Scholar 

  9. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)

    Article  Google Scholar 

  10. Favre, C., Völzer, H.: Symbolic execution of acyclic workflow graphs. In: Hull et al. [13], pp. 260–275. https://doi.org/10.1007/978-3-642-15618-2_19

  11. Ha, N.L., Prinz, T.M.: Partitioning behavioral retrieval: an efficient computational approach with transitive rules. IEEE Access 9, 112043–112056 (2021)

    Article  Google Scholar 

  12. Havlak, P.: Nesting of reducible and irreducible loops. ACM Trans. Program. Lang. Syst. 19(4), 557–567 (1997). https://doi.org/10.1145/262004.262005

    Article  Google Scholar 

  13. Hull, R., Mendling, J., Tai, S. (eds.): Business Process Management. LNCS, vol. 6336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2

    Book  Google Scholar 

  14. Keller, G., Scheer, A.W., Nüttgens, M.: Semantische Prozeßmodellierung auf der Grundlage “Ereignisgesteuerter Prozeßketten (EPK)”. Inst. für Wirtschaftsinformatik (1992)

    Google Scholar 

  15. Kindler, E.: On the semantics of EPCs: resolving the vicious circle. Data Knowl. Eng. 56(1), 23–40 (2006)

    Article  Google Scholar 

  16. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_14

    Chapter  Google Scholar 

  17. Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76848-7_9

    Chapter  Google Scholar 

  18. OASIS: Web Services Business Process Execution Language Version 2.0, April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

  19. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version 2.0. formal/2011-01-03, January 2011. http://www.omg.org/spec/BPMN/2.0

  20. Polyvyanyy, A.: Structuring process models. Ph.D. thesis, University of Potsdam (2012)

    Google Scholar 

  21. Polyvyanyy, A., García-Bañuelos, L., Weske, M.: Unveiling hidden unstructured regions in process models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 340–356. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05148-7_23

    Chapter  Google Scholar 

  22. Polyvyanyy, A., La Rosa, M., ter Hofstede, A.H.M.: Indexing and efficient instance-based retrieval of process models using untanglings. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 439–456. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_30

    Chapter  Google Scholar 

  23. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19589-1_2

    Chapter  Google Scholar 

  24. Prinz, T.M., Amme, W.: A complete and the most liberal semantics for converging OR gateways in sound processes. Complex Syst. Informatics Model. Q. 4, 32–49 (2015). https://doi.org/10.7250/csimq.2015-4.03

    Article  Google Scholar 

  25. Prinz, T.M., Amme, W.: Control-flow-based methods to support the development of sound workflows. Complex Syst. Informatics Model. Q. 27, 1–44 (2021)

    Google Scholar 

  26. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf. Syst. 25(2), 117–134 (2000)

    Article  Google Scholar 

  27. Sreedhar, V.C., Gao, G.R., Lee, Y.: Identifying loops using DJ graphs. ACM Trans. Program. Lang. Syst. 18(6), 649–658 (1996)

    Article  Google Scholar 

  28. Steensgaard, B.: Sequentializing program dependence graphs for irreducible programs. Technical report, Microsoft Research (1993)

    Google Scholar 

  29. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  30. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009). https://doi.org/10.1016/j.datak.2009.02.015

    Article  Google Scholar 

  31. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74974-5_4

    Chapter  Google Scholar 

  32. Völzer, H.: A new semantics for the inclusive converging gateway in safe processes. In: Hull et al. [13], pp. 294–309. https://doi.org/10.1007/978-3-642-15618-2_21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsun Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prinz, T.M., Choi, Y., Ha, N.L. (2022). Understanding and Decomposing Control-Flow Loops in Business Process Models. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds) Business Process Management. BPM 2022. Lecture Notes in Computer Science, vol 13420. Springer, Cham. https://doi.org/10.1007/978-3-031-16103-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16103-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16102-5

  • Online ISBN: 978-3-031-16103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics