2207.08484v2 [cs.CR] 19 Jul 2022

arxXiv

Fine-grained Data Access Control for Collaborative
Process Execution on Blockchain

1[0000—0002—0565—9168]’ Claudio Di CiCCiOl [0000—0001—5570—0475],
[0000—0002—4833—5921]

Edoardo Marangone
and Ingo Weber?

! Sapienza University of Rome, Rome, Italy
{edoardo.marangone,claudio.diciccio}@uniromal.it
2 Software and Business Engineering, Technische Universitaet Berlin, Germany
ingo.weber@tu-berlin.de

Abstract. Multi-party business processes are based on the cooperation of different
actors in a distributed setting. Blockchains can provide support for the automation
of such processes, even in conditions of partial trust among the participants.
On-chain data are stored in all replicas of the ledger and therefore accessible
to all nodes that are in the network. Although this fosters traceability, integrity,
and persistence, it undermines the adoption of public blockchains for process
automation since it conflicts with typical confidentiality requirements in enterprise
settings. In this paper, we propose a novel approach and software architecture
that allow for fine-grained access control over process data on the level of parts
of messages. In our approach, encrypted data are stored in a distributed space
linked to the blockchain system backing the process execution; data owners specify
access policies to control which users can read which parts of the information.
To achieve the desired properties, we utilise Attribute-Based Encryption for the
storage of data, and smart contracts for access control, integrity, and linking to
process data. We implemented the approach in a proof-of-concept and conduct
a case study in supply-chain management. From the experiments, we find our
architecture to be robust while still keeping execution costs reasonably low.

Keywords: Attribute Based Encryption - Blockchain - Business Process Manage-
ment - [PFS

1 Introduction

Blockchain technology is gaining momentum, among other reasons because it allows
for the creation and enactment of business processes between multiple parties with low
mutual trust [29,26]. The distributed nature of public permissionless blockchains allows
every user in the network to have a copy of the ledger and therefore all the data is freely
accessible. This transparency, together with the permanence of data and non-repudiability
of transactions granted by the technology, motivate the use of blockchains as a reliable
ground for verifiable and trustworthy interactions.

Especially in cases wherein the parties lack trust in one another, though, hiding some
data from the majority of users can be useful. As a matter of fact, security and privacy are
at the centre of the debate when considering blockchain technology [33,9]. For example,

mailto:edoardo.marangone@uniroma1.it;claudio.diciccio@uniroma1.it
mailto:ingo.weber@tu-berlin.de

2 E. Marangone et al.

Fig. 1: BPMN collaboration diagram of a multi-party process

Corradini et al. [5] point to security and privacy aspects as relevant points. The authors
underline that the encryption of the payload of messages (a solution already present in
the literature) does not preserve the secrecy of information. Sharing a decryption key
among process participants does not allow data owners to selectively control the access to
different parts of a single message. Using the public key of a recipient forces the sender to
create multiple copies of every message (one per intended reader) and severely hampers
the traceability of the process. Another proposed solution is the usage of permissioned
blockchains. However, this scheme entails strong complexity and management issues.

Our work aims to close the gap by proposing a technique that guarantees data privacy
among parties. With this architecture, the parties can exchange information in a secure
way and can also hide data (or parts thereof) from other players with whom they do not
want to share it. As such, this paper introduces a novel approach to address security and
privacy problems by presenting an architecture that allows for the ciphering of selected
data using Attribute-Based Encryption (ABE) [25] so as to control fine-grained read and
write access to data.

In the following, Sect. 2 presents a running example, to which we will refer through-
out the paper, and illustrates the problem we tackle. Sect. 3 outlines the fundamental
notions that our solution is based upon. In Sect. 4, we describe our approach in detail. In
Sect. 5, we present our proof-of-concept implementation and illustrate the results of the
experiments we conducted therewith. Sect. 6 presents the related work in the literature.
Finally, Sect. 7 concludes the paper and draws some avenues for future works.

2 Running example and problem illustration

Figure 1 depicts a Business Process Model and Notation (BPMN) collaboration diagram
representing the supply chain behind the production of drones. We will use this scenario
as a running example throughout our paper. We assume process execution is backed by a
blockchain-based infrastructure as illustrated in [8].

A new process instance begins when a Customer orders one or multiple drones
from a Manufacturer. After checking the availability of the mechanical and electronic

Access Control on Blockchain 3

components in the warehouse, the Manufacturer orders the missing ones from a local
Mechanical parts supplier and an international Electronic parts supplier, respectively.
After the assemblage of the required parts, the suppliers prepare the shipment documents,
the package, and send the products. Customs then check the documents of the interna-
tional supplier and release the custom clearance after the verification of compliance
concludes positively. Upon the receipt of the parts, the Manufacturer proceeds with
their assemblage. After sending a notification about the stage reached by the production
process, the Manufacturer sends an invoice to the paying Customer, and requests a
Courier to deliver the package. The process concludes with the consignment of the
ordered product.

We highlight the information artefacts we are going to primarily focus on for our
examples as paper documents with twisted corners, namely (i) purchase order, (ii) bill of
materials (BoM), (iii) customs clearance, (iv) invoice (for the customer), and (v) trans-
portation order. First and foremost, we observe that the exchanged information in this
process should not be fully accessible outside of the involved counterparts in the process
execution. Notice that, instead, a non-encrypted communication through the blockchain
allows every node (not necessarily involved in the process either) to disclose the full
content of all data attached to transactions. If all parties knew a secret key, they could
store the data on-chain once encrypted with that key to ensure nobody outside their
circle can read through them, yet ensuring that the data are notarised by the blockchain.
However, we remark that although the information exchanges involve multiple actors in
collaborative processes, it is rare that every actor is supposed to read all the exchanged
data in their entirety — particularly in this scenario, it never is the case. For example, the
invoice details should be undisclosed to any other party that is not the Customer or the
Manufacturer, just like the purchase order. Likewise, the transportation order should be
fully accessible only to the Manufacturer and the Courier.

Whenever a message sender and recipient are single players who know one another
in advance, the data producer could encrypt the message and give the access key to the
sole expected consumer. However, this may not be a reasonable assumption in cases
like the one we discuss here. The customs clearance, for instance, should be known to
more than two parties, as the Electronic parts supplier and the Customs are directly
involved but the Manufacturer should also be made aware of the result at the end of the
border controls. Besides, not only the operators in the Customs office involved in the
first inspection should be granted access — this restriction would impede future checks.

Another example of non-binary communication channel pertains to the bill of mate-
rials. The section of the BoM for the Mechanical parts supplier should not be read by
any other party but the recipient of the production order and the Manufacturer. Notice
that, albeit the Electronic parts supplier is also a producer of basic components for the
Manufacturer, it should access the sole part of the BoM referred to its area of compe-
tence. Therefore, different parts of a shared data artefact should be accessible to different
players. In contrast, the section of the BoM with the identifying data of the Manufacturer
should be visible to both suppliers.

In the last few years, research work flourished for blockchain-based control-flow
automation and decision support for processes like the one in this section [29,27,16,17].
Our investigation complements this body of research by focussing on the secure infor-

4 E. Marangone et al.

Table 1: Requirements and corresponding actions in the approach

Requirement Approach

R1 Access to parts of messages should be ~ We use Attribute-Based Encryption (ABE) to encrypt messages,
controllable in a fine-grained way (at- which are stored off-chain while their locator and hash are kept on
tribute level), while integrity is ensured chain. Access is mediated by a component that decrypts messages

only if the requester has the necessary attributes.

R1.1 Access policies should be linked to indi- ~ Access policies associate granted classes of users to the sole mes-

vidual (parts of) information artefacts sages or sections (slices) thereof that pertain to them
R1.2 Access policies should control access The policies are fine-grained, and the component that decrypts
levels for authenticated users messages does so as per on-chain information
R1.3 Non-authorised access is prevented Data is kept in an encrypted form, and only authorised requests
allow for decryption; salting prevents leakage of information
through hashes
R2 Information artefacts should be written =~ We use hashed, permanent off-chain storage in combination with

in a permanent, tamper-proof and non- hashes on-chain
repudiable way

R3 The system should be independently au- On-chain information is publicly available to users of the system,
ditable with low overhead and through hashes integrity of off-chain data becomes auditable

mation exchange among multiple parties in a collaborative though partially untrusted
scenario. We list the key requirements for our approach in Table 1. Next, we focus on
the background knowledge that to which our approach resorts.

3 Background

In this section, we give an overview of the fundamental notions upon which our approach
is built. The fundamental building blocks of our work are Distributed Ledger Technology
(DLT), particularly programmable blockchain platforms, and Attribute-Based Encryption
(ABE). Next, we outline the basic notions they build upon and relate them to our running
example.

Distributed Ledger Technologies (DLTs) realise protocols for the storage, processing
and validation of transactions among a network of peers. Their distributed nature entails
that no central authority or intermediary are involved in the management of the data. To
all these transactions a timestamp and a unique cryptographic signature are attached.
To produce signatures, a public/private key scheme is adopted. Every user holds an
account with a unique address to which the public and private keys are associated.
The shared database is public so all participants in the network can have access to
the data. Blockchain is a type of DLT, wherein segments of the ledger are collated
into blocks and those blocks are backward-linked together forming a chain. DLTs in
general and the blockchain in particular cannot be tampered with thanks to a blend of
cryptographic techniques, including the hashing of blocks themselves, the inclusion in
every block of the hash of the previous one, and the distributed validation of transactions.
Public blockchain platforms such as Bitcoin [20], Ethereum [31] and Algorand [4]
require fees to be paid in order to let transactions be submitted and processed by the
platform. More recent blockchain protocols such as Ethereum and Algorand include the
opportunity to run Smart Contracts, namely programs deployed, stored and executed in
the blockchain [7]. Smart contracts are invoked via transactions. The execution is spread

Access Control on Blockchain 5

among the nodes without the involvement of a trusted third party so that the overall
behaviour can be verified and trusted. Moreover, smart contracts can also trigger the
next steps of a workflow when some conditions are met [29]. As with transactions, the
execution of smart contract code is subject to costs that in the Ethereum nomenclature
fall under the name of gas. These costs depend on the complexity of the invoked code
and on the amount of data exchanged and stored. To reduce the invocation costs of
smart contracts, external Peer-to-peer (P2P) systems are typically employed to save
larger bulks of data [32]. One such system is the InterPlanetary File System (IPFS), a
distributed system for the storage and access to files. Having it a Distributed Hash Table
(DHT) at its core, the stored files are scattered among several nodes. Akin to DLTs, no
central authority or trusted organisation retaining the whole bulk of data is thus involved.
IPFS makes use of content-addressing to uniquely identify each file in the network. The
data saved on IPFS are hash-linked by resource locators that are then sent to contracts
that store them on chain [15]. Thereby, the hash of external data together with their
remote handle are permanently stored on chain to link them to the ledger.

In a multi-party collaboration scenario like the one we described in Sect. 2, the
blockchain creates a layer of trust: the ledger operates as an auditable notarisation
infrastructure to certify the occurrence of transactions among the involved actors (e.g., the
purchase orders or custom clearances), the smart contracts guarantee that the workflow is
followed as per the agreed behaviour, as illustrated in [8,18]. Documents such as purchase
orders, bill of materials and custom clearances can be stored on IPFS and linked to the
transactions that report on their submission. However, those data are accessible to all
peers on chain. Techniques to cipher the data and control their accessibility to predefined
users become necessary so as to take advantage of the security and traceability guarantees
of blockchain while managing read and write grants on the stored information.

Attribute-Based Encryption (ABE) is a type of public-key encryption in which
the ciphertext (i.e., an encrypted text derived from a plaintext) and the correspond-
ing private key to decipher it are linked together by attributes [25]. In particular, the
Ciphertext-Policy ABE (CP [3]) is such that every potential user is associated with a
number of attributes over which policies are expressed. Attributes, in particular, are
propositional literals that are affirmed in case a user enjoys a given property. In the
following, we shall use the teletype font to format attributes and policies. For example,
user OxE756 [. . .1b927 is associated with the attributes Supplier, to denote their role,
and 14548487, to specify their involvement in process instance number 14548487. For
the sake of brevity, we omit from the attribute name that the former is a role and the latter
a process instance identifier (e.g., Supplier in place of RoleIsSupplier or 14548487
instead of InvolvedIn14548487) as we assume it is understandable from the context.
Policies are associated to messages and expressed as propositional formulae on the
attributes (the literals) to determine whether a user is granted access (e.g., Courier or
Manufacturer).

All users can attain a unique secret key (sk). The sk is a fixed-length numeric
sequence (typically of 512 bits) generated on the basis of the user attributes and a pair of
keys, namely a master public key (mpk) and a master key (mk). In turn, mpk and mk are
generated through a cryptographic parametric algebraic structure (e.g., a pairing group).
A message is encrypted via the mpk and the policy. The users can decrypt the ciphertext

6 E. Marangone et al.

by using the mpk and their own sk. It follows that an unauthorised user would not have
the suitable sk as per the policy. Furthermore, without knowledge of the mpk, the user
cannot read the encrypted data either. Notice that mpk alone would not allow for the
generation of new sks as the master key (mk) is also necessary. To conclude, we remark
that the generation of keys, the encryption of plaintexts, and the deciphering thereof, are
operations that are algorithmically handled and thus no trusted party is needed — any
peer with access to the required credentials could run the necessary code.

In our setting, intuitively, users are process participants, messages are the data
artefacts exchanged during the process execution, ciphertexts are the encrypted data
artefacts, policies determine which artefacts can be access by whom, and keys are the
instruments that are granted to the process parties to try and access the artefacts. Next,
we explain how we combine the use of blockchain and CP-ABE to build an access-
control architecture for data exchanges in blockchains that meet the requirements listed
in Table 1.

4 The CAKE approach

In this section, we describe our approach, named Control Access via Key Encryption
(CAKE). Figure 2 illustrates the main components of our architecture alongside their
interaction by means of a UML collaboration diagram. The involved parties are:

1. the Data Owner, who wants to cipher the information artefacts (henceforth also
collectively referred to as plaintext) with a specific access policy (e.g., the Manufac-
turer who wants to restrict access to the bill of materials to the sole intended parties,
i.e., the suppliers); we assume Data Owner is equipped with a public/private key
pair;

2. one or more Readers, interested in some of the information artefacts (e.g., the
Manufacturer, the Electronic parts supplier, the Mechanical parts supplier); we
assume every Reader to keep their own public/private key pair;

3. the Attribute Certifier, specifying the attributes characterising the potential readers
of the information artefacts; we assume the Attribute Certifier to hold a blockchain
account;

4. the Secure Data Manager (SDM), a stateless software component ciphering the
plaintext with the policy received from Data Owner; we assume the Data Owner to
hold a blockchain account;

5. the Secure Key Manager (SKM), a stateless software component generating access
keys for Readers and that the Readers invoke to decrypt messages; we assume the
SKM comes endowed with a pair of public and private encryption keys and to hold
a blockchain account;

6. IPFS, used to store the ciphertext (i.e., the ciphered plaintext); and finally

7. the Smart Contract, used to safely store the resource locator to the ciphertext saved
on IPFS and the information about potential readers of the information artefacts;
at deployment time, the Smart Contract is associated with the blockchain account
addresses of the SDM, of the SKM, and of the Attribute Certifier, so as to accept
invocations only by those components.

Access Control on Blockchain 7

2: Policies and information artefacts 3: File (incl. ciphertext, hash, salt, shared secret)
Data Owner Secure Data Manager (SDM)
I~ 4: IPFS link
6: message_id
5: IPFS link
1: Users addresses and attributes
7: Key request 8: Get user attributes,
< y
. " 9: Response InterPlanetary File
Attribute Certifier Reader 10: Access key, IPFS link| Secure l;e}g/MManager) Smart Contract System

11: Access request (SKM) 12: Get IPFS link (IPFS)

16: Info. artefacts, salt 13: Response
14: Access ciphertext T

15: Response

Fig. 2: The key component interactions in the CAKE approach

Using the enumeration schema of Fig. 2, action (1) is a preliminary operation in which
the Attribute Certifier transmits the attributes and the identifying blockchain account
addresses of the Readers to the Smart Contract so as to make them publicly verifiable on
chain. To this end, the Attribute Certifier operates as a push-inbound oracle [19]. The
Attribute Certifier stores on chain the attributes that determine the role of the Reader
and, optionally, the list of process instances in which they are involved. For example,
the Attribute Certifier stores on chain that 0x906D[. . .]1Dba8 is the address of a user
that holds the Manufacturer attribute, determining the role, alongside the numeric
identifier 14548487 for the running process (the so-called case id), specifying the
participation of the manufacturer in that particular process instance. Also, it registers that
OxE756[...]1b927 and OxE2C8[. . .]1A2810 are Readers endowed with the Supplier
and 14548487 attributes, and that the Electronics and Mechanics attributes belong
to the first and the second Reader, respectively.

Thereafter (2), the Data Owner sends the plaintext (i.e., an information artefact such
as the bill of material) and the access policies to the SDM, so that the latter can make
use of the ABE algorithm to cipher the plaintext with the policy. The access policy
declares the conditions according to which a user can be granted access to the ciphered
information.

Notice that a message can be separated into multiple slices, and each of those can be
associated to a different policy. For example, the bill of materials of process instance
14548487 is partitioned as follows (see Table 2): a slice is accessible to all suppli-
ers and manufacturers involved in the process instance, as the policy reads 14548487
and (Manufacturer or Supplier);another one pertains to the sole production or-
der of mechanical parts —i.e., 14548487 and (Manufacturer or (Supplier and
Mechanics)); a third slice is specific for the electronic parts supplier —i.e., 14548487
and (Manufacturer or (Supplier and Electronics)). Notice that actors who
are granted access to the data do not necessarily need to be directly involved in a pro-
cess instance. It is the case of Customs, e.g., in our running example: the policy reads,
indeed, Customs or (14548487 and ([...])). Therefore, Customs are authorised
to access data across all instances with their key, unlike Manufacturers. In other words,
the inclusion of a case_id as an attribute in the policy determines a design choice on

8 E. Marangone et al.

Table 2: Message policy examples

Message Slice Policy

Purchase
a 1 14548487 and (Customer or Manufacturer)
order

14548487 and (Manufacturer or (Supplier))

Bill of materials 14548487 and (Manufacturer or (Supplier and Electronics))

Wl —

14548487 and (Manufacturer or (Supplier and Mechanics))

Customs

Customs or (14548487 and (Manufacturer or (Supplier and Electronics)))
clearance

Invoice 1 14548487 and (Manufacturer or Client)

Transportation

1 14548487 and (Manufacturer or Courier)
order

whether a Reader can use the sk across different process instances or not. If the case_id
is specified, different access keys are generated for separate instances.

We assume every slice to be associated with a unique identifier (henceforth, slice_id).
Table 2 lists the policies used in our running example. The semantics of access policies
meets R1.1, as they are at the fine-grain level of slices within messages.

Then (3), the SDM runs the algorithm for the generation of the ABE master public
key (mpk) and master key (mk). It uses the master key (mk) and the policies to encrypt
the plaintext and attain the ciphertext. Thereafter, it generates a unique identifier for the
message (message_id), such as 17071949511205323542. For every slice, it builds a
unique identifier (slice_id) and a random number (named salf) to be additively used
for hashing. Finally, it stores on IPFS the message_id and, for each slice, the slice_id,
ciphertexts, hash of the slice’s plaintext combined with the corresponding salt, and the
following data encrypted with the public key of the SKM, which we collectively refer
to as shared secret: (i) the mpk, (ii) the mk, (iii) additional parametric metadata for the
cryptographic algebraic structure (for every slice). In our approach, the SDM forgets
both mpk and mk after storing them as it is stateless. Also, notice that a new pair of
keys is created for every message (i.e., IPFS file) to address R1.2. As a result (4), the
IPFS returns the resource locator (i.e., the link to the IPFS file) to the SDM, which the
SDM stores in the Smart Contract (5). Next (6), the SDM returns the message_id to
the Data Owner. The Data Owner can send the message_id to the interested parties to
let them know the content is ready for retrieval. For example, the Manufacturer sends
the suppliers the information that 17071949511205323542 is the identifier to use to
fetch the bill of material.

As said, the SDM stores the association between the message and the resource locator
on chain via the Smart Contract (5). Thus, we have data stored off-chain that is linked
with the blockchain ledger, as per R2. Table 3 illustrates the messages we described in
our running example in Sect. 2 as saved on IPFS by the SDM. Every IPFS file in our
approach consists of a header with the address of the sender (i.e., the Data Owner), the
message_id, and the encrypted pair of keys (mpk and mk). The body consists of slices,
each with its identifier (slice_id), hash, ciphertext, salt and metadata. We recall that
salt and metadata are encrypted with the public key of the SKM. Furthermore, notice that
the plaintext is encrypted, and albeit being stored semi-publicly on IPFS, it is unreadable
even to the Data Owner (unless a party obtains a suitable key, which can be granted only
by the SKM). Thereby, we meet R1.3.

Access Control on Blockchain 9

Table 3: Examples of messages encoded by the CAKE system.

Message | Original data File header File body (slices)
Company_name : Alpha Slice_id: 10322929677141064041,
sender: 0x989a [...] FeaD, °
Ppurchase | Address: 34, Alpha street eneeme_id: 5306502810594556865 hash: 0x2958 [...] fb611,
E-mail: cpny.alphadmail.com - ; salt: "\u008d [...] 01bd",
order pk: {"g": "\\uooaf [...] 00f4}, pogn
Quantity: 5 nks {"beta": "\\u009b [...] 009a} | Metadata: {"c1": [...] 4Els},
Price: $5000 : : cipherText: "qp21 [...] 7Ue9Q"
slice_id: 7816105805828306901,
Manufacturer_company: Beta hash: 0x953a [...] £8d8,
Address: 82, Beta street salt: "Zu00 [...] u004",
E-mail: mnfctr.betaGmail.com metadata: {"ci": [...] 00a0},
cipherText: "oT2W [...] MQ=="
Frames_quantity: s]
Bill Propeller_quantity: 80 sender: 0x906D [...] Dbas, ;i;;?”d' gii;::sa[ewiezisg:w’
of PropellerGuard_quantity: 63 message_id: 17071949511205323542, e Vbwsn [ol7 pagan.
4 Camera_quantity: 30 pk: {"g": "\\u0087 [...] 0Oca}, g 3
materials metadata: {"ci®: [...] asq2},
Controller_quantity: 4 mk: Trbeta’ "\\woob2 [...] 00£b} | [PRaRIR 0 L o0 e
Amount_paid: $12000 P :
INU_quantity: 6 slice_id: 3147899764966459866,
ESC_quantity: 40 hash: Oxjars [...] nedd,
Engines_quantity: 9 salt: "nstw [...] mey4",
Batteries_quantity: 25 metadata: {"ci": [...] 23rs},
Amount_paid: $9850 cipherText: "ht3r [...] asf3"
slice_id: 4607011054135544290,
Customs | Date: 2022-05-10 semder: ~0x0182 [...] 8DC0, hash: Ox4ee6 [...] 2386,
. message_id: 5757578887823057098, : 0050 .1 oots
Clearance | Sender: Beta et Cans mvaka00 o7 oobs) salt: \u0010 [... 13,
Receiver: Alpha . S : metadata: {"ct": [...] 00c2},
nk: Cbeta’s "\\woosd [...] oaze} | TIRCRAT St 08
slice_id: 12641782614493395949,
Gross_total: $5000 e s giggﬁgs'ﬁéié]szg;:iés hash: 0xada6 [...] 0£79,
Invoice Company_VAT: V12345678 message_id: : salt: "o9\u [...] Ole5,
- pk: {rg" \uoode [...] 00a2}, Vein
Issue_date: 2022-05-12 . . metadata: {"ci": [...] uo09a},
mk: Cbeta’s "\\woobe [...] 00co} | TEIACHIAT L nlL st gReh
: 7017
sender: 0x906D [...] Dbas, i:;?"d gizfgi ?' 05’72@2?55’
Transportation | E-mail: cpny.alphaOmail.com | message_id: 9846697684368436866, s oems [0] otin
Arrival_date: 2022-06-06 pk: \ur2sd [...] 3a7s}, : aoA L :
nk- : M\\wo00lq [7 osq2} metadata: {"c1": [...] 00b4},
: : cipherText: "opBK [...] J709"

When the Reader (e.g., the Electronic parts supplier) wants to read the data of a
message (e.g., the section of interest in the bill of materials), it requests a key from the
SKM (7). Then, the SKM retrieves the Reader data (the blockchain address and attributes)
from the Smart Contract (8,9). Notice that these pieces of information were previously
stored by the Attribute Certifier at step (1). Equipped with these pieces of information
and with the shared secret (including the pk and mk), it produces an ABE secret key (sk)
for the Reader and sends it back (10) together with the IPFS link corresponding to the
requested message (e.g., the one identified by 17071949511205323542). Notice that
the shared secret (including the mpk and mk) is saved on IPFS encrypted with the public
key of the SKM, so that only the SKM can use its private key to retrieve the necessary
information and produce the sk. Also, we remark that the SKM is stateless, so it retains
no information after it responds to the Reader.

Equipped with their own access key (sk), the Reader can begin the message decryp-
tion procedure. As per the ABE paradigm, the sk alone is not sufficient to decipher
messages though. The mpk is also necessary, though it is encrypted in the IPFS file
with the public key of the SKM. Therefore, the Reader makes an access request to the
SKM (11). In turn, the SKM asks for the IPFS link from the Smart Contract (12,13).
Then, the SKM retrieves the ciphertext from IPFS (14) and decrypts it with the sk of the
user and the shared secret, extracted and deciphered from the requested message. If the
decryption is successful, the SKM component sends the information artefacts back (15).
Otherwise the Reader request is denied.

Recall that a message can be composed of multiple slices. In the case of the bill of
material, e.g., message 17071949511205323542 consists of three slices (see Tables 2
and 3). The first slice contains information available to all suppliers, the second one
only for Electronic parts supplier, and the third one only for Mechanic parts supplier.
Therefore, with the sk of the Electronic parts supplier, its attributes and the shared
secret kept by the SKM, the latter can decipher only the first and second slice, but not

10 E. Marangone et al.

Smart Contract IPFSinfo Security Data Manager

- allLinks:mapping (uint64 => IPFSInfo) 1.1 1.1 - bytes32 hashPartl;
- allUsers:mapping (Address => Userlnfo) - bytes32 hashPart2;
- SDMaddress: Address

- SKMaddress: Address

- DOwnAddress: Address 11

+ setlPFSInfo(messange_id:uint64, link:String) Security Key Manager

+ getlPFSInfo(messange._id:uint64): link:String Userinfo

+ setUserlnfo(address: Address, attributes:uint]]; + generateKey(messange_id:uint, address:Address): ipfsLink:String, key:String

+getl ddress) 1.1] - uint[] attributes; + accessData(messange_ id:int, slice_id-uint, address:Address): plaintext:String, salt:String

+ cipherMessage(plaintext:String, policy:String, address:Address): message._id:int

Fig. 3: The implemented components of the CAKE system

the third one — as per the specified policies. The SKM component thus returns those
slices only (16). The controlled, fine-grained data access in CAKE is designed to meet
the requirements regarding auditability (R3), integrity and control (R1) and specifically
granularity (R1.1).

We conclude this section with a few more remarks about security and integrity. When
a Reader has received the information artefacts, they may want to verify that the data is
not counterfeit. This is the reason why the SKM component returns the (decrypted) salt
along with the information artefacts to the Reader (16). With the received deciphered
data and the salt, the Reader can compute the hash and check if it is equal to the one
stored on IPFS by the SDM at step (3) or not. We remark that the Reader had received
the IPFS link along with the key at step (8), so that they could directly access the data on
IPFES to check the integrity of the information artefacts received from the SKM later on.
This design contributes to meeting R1.3. The data on IPFS is ciphered and only the SKM
can decipher it. The usage of the salt prevents leakage of information, like dictionary
attacks.

Also, we remark that the communication backbone outside of blockchain and IPFS
for the information exchanges between components is based on the Secure Sockets Layer
(SSL) protocol, so as to avoid packet sniffing from malicious third parties that could
intercept the data. Furthermore, we assume that the communication from Data Owner
to SDM, and from Reader to SKM, are preceded by an initial authentication phase to
address R1.2. During a preliminary handshake, the SDM and the SKM send a random
value to the callers. The callers responds with that value signed with their own private
key, so as to let the invoked components verify their identity. Notice that, without this
measure, any malicious peer could request the sk in place of the real Reader by knowing
their address and guessing a file they could be granted access to.

5 Implementation and evaluation

This section describes the proof-of-concept implementation of our approach and the test
runs we conducted to assess its affordability for data access control and audits.

Figure 3 depicts the core CAKE components in the form of a UML class di-
agram. The code of our prototype can be found at https://github.com/apwbs/
AttributeBasedEncryption together with the detailed results of our experiments.
We implemented the SDM, SKM and the communication channels in Python. We en-
coded the Smart Contract in Solidity as we employ the Ethereum testnet Ropsten for the
deployment of our blockchain components: all transactions directed to the CAKE Smart

https://github.com/apwbs/AttributeBasedEncryption
https://github.com/apwbs/AttributeBasedEncryption

Access Control on Blockchain 11

Table 4: Gas consumption and total cost of test transactions

setIPFSInfo setUserInfo
gasUsed gasPrice Total cost gasUsed gasPrice Total cost ETH/EUR
[unit] [wei] [EUR] [unit] [wei] [EUR] exchange

avg. 67486.52 1399400015 0.16438 40755 1370810611 0.09734 1746.35
min 67484.6 1000000007 0.12378 40755 1000000007 0.07475 1650.68
max 67487 1649000034 0.18587 40755 1644053019 0.11191 1834.14

Contract instance we used for our tests can be freely inspected at https://ropsten.
etherscan.io/address/0x2D9EAe20E1E7515d47fBB9A5d454Ce7Be59cA03f. To
manage the public/private key pair system for the Data Owner, Readers and SKM, we
resort to the Rivest—-Shamir—Adleman (RSA) algorithm [24]. In our software prototype,
the length of the pair of keys amounts to 2048 bits.

To test our system, we called the methods of the deployed Smart Contract to measure
gas consumption. More in the detail, we focussed on the invocations that require the
payment of gas fees, namely (i) the storage of the address and attributes of Readers
(setUserInfo(...) in Fig. 3), and (ii) the storage of the IPFS link associated to a
message (setIPFSInfo(...)). The data we used to run our experiments are taken
from our running example (see Table 3). We executed fifteen calls per day in five
consecutive days. Out of the fifteen calls, ten were directed to setUserInfo and five
to setIPFSInfo. The higher numerosity of the former is due to the fact that the latter
has a rather fixed input format as the length in bits of IPFS locators is constant. As
setUserInfo takes as input arrays, the variability of inputs is potentially higher.

Table 4 summarises the results. For every call we provide the average, minimum
and maximum of (7) units of gas used to run the code, (ii) price in wei paid for the gas
consumption (using the Ropsten default setting), (iii) total cost in Euros based on the
daily exchange rate with an Ether. The costs are relatively limited and range between
ten and twenty Euro cents, which can be considered a reasonably low amount in light
of the permanency and security guarantees provided by the system. Most importantly,
the size of the information artefacts do not have a significant impact on the price paid to
store them.

To save on gas expenditures, we have adopted a few mechanisms that reduced the
size of input and output data. Among them, we recall the following two. First, we have
turned IPFS links from their native base-58 encoded format in strings of 46 characters to
pairs of bytes32 elements (the IPFSInfo struct in Fig. 3). This allowed for a saving of
approximately 30 000 units of gas per call of setIPFSInfo. Secondly, we have encoded
attributes into numeric identifiers to avoid the usage of strings for denumerable entities,
thereby saving more gas units as the length of the attribute array increases. Further
gas-consumption optimisation techniques may be achievable especially for the attribute
checking. This challenge paves the path for future work.

6 Related work

Over the last few years, several research endeavours have been dedicated to the automa-
tion of collaborative processes based on blockchain. Weber et al. [29] present a technique

https://ropsten.etherscan.io/address/0x2D9EAe20E1E7515d47fBB9A5d454Ce7Be59cA03f
https://ropsten.etherscan.io/address/0x2D9EAe20E1E7515d47fBB9A5d454Ce7Be59cA03f

12 E. Marangone et al.

that resorts to blockchain technology to execute business process between parties who
do not trust each other. In their seminal work, they show how the actors can find a
mutual agreement on the enacted behaviour without the need to trust a central authority
for its enforcement. Lopez Pintado et al. [16] present Caterpillar, a blockchain-based
BPMN execution engine. Caterpillar allows users to create instances of a process and
to monitor their status. Tran et al. [27] introduce Lorikeet, a model-driven engineering
(MDE) tool to implement business processes on chain for the management of assets
(e.g., cars, houses), thereby proposing a solution for a scenario that traditionally relies
on central authorities. Di Ciccio et al. [8] describe how to design and run business
processes where several parties are involved, present the building blocks of model-driven
approaches for blockchain-based collaborative business processes with a comparison be-
tween Caterpillar and Lorikeet. Lopez Pintado et al. [15] present a model to dynamically
bind the actors in a multi-party business process to roles and a specification language
for binding policies. CAKE can handle dynamic role binding as the attributes are set by
the Attribute Certifier possibly at run time or deploy time. Access keys are generated
upon request and not before the process starts. Madsen et al. [17] investigate distributed
declarative workflow execution where the collaboration is among adversaries. In such
settings, the involved parties do not trust each other and they can also suspect that
a party might not act like established. In this work, the authors demonstrate that the
execution of the distributed declarative workflow could be implemented as a Smart
Contract while ensuring the enforcement of workflow semantics and notarisation of the
execution history. Corradini et al. [5] present ChorChain. It takes a BPMN choreography
model as input and outputs its translation into a Solidity Smart Contract. ChorChain also
allows auditors to obtain ex-post and runtime information on the process instances. These
works undoubtedly contribute to the integration of blockchain and process management
thus unlocking security and traceability opportunities. However, they do not include
mechanisms to ensure fine-grained access control to data saved on a public platform. In
contrast, our work precisely focuses on this aspect in a collaborative business process
scenario.

Another branch of research work that pertains to our investigation area is the privacy
and integrity of data stored on chain. Several papers in the literature document the adop-
tion of encryption to this extent. Hawk [12] is a decentralised system that automatically
implements cryptographic devices based on user-defined private Smart Contracts. We
take inspiration from this work in that we resort to policies backed by Smart Contracts
to cipher messages. Bin Li et al. [13] present RZKPB, a privacy protection system for
transactions in shared economy built upon blockchain. This method does not require
third trusted parties and preserves transaction privacy as it does not store the financial
transactions publicly on chain. Their methodology relates with ours in that we resort
to external data stores to save data too, yet we link it with transactions on the ledger.
In [14], the authors describe FPPB, a fast privacy protection method based on licenses.
It uses zero-knowledge proof, secret address and encryption primitives in the blockchain.
Thanks to these features, it grants consistency without disclosing data. This architecture
can be used in several shared economic applications. Rahulamathavan et al. [23] propose
a new privacy-preserving blockchain architecture for IoT applications based on Attribute-
Based Encryption techniques. We employ ABE too, yet with the objective of enhancing

Access Control on Blockchain 13

existing architectures with our approach. In contrast, this model aims at changing the
blockchain protocol at its core. Benhamouda et al. [2] present a solution that allows a
public blockchain to act as a repository of secret data. In their system, at first, a secret is
stored on chain, then the conditions under which to release it are specified and, finally,
the secret is disclosed if and only if the conditions are met. In our approach, we employ
shared secrets among components but we do not use the blockchain as a storage for
secret data nor expect to disclose the secret. Differently from the techniques above, we
tackle the problem of controlled data access in a multi-party process scenario, wherein
several information artefacts are exchanged and different actors can access (parts of)
messages based on fine-grained policies.

Wang et al. [28] present a secure electronic health record system wherein they
combine ABE, Identity-Based Encryption (IBE) and Identity-Based Signature (IBS)
with the blockchain technology. This architecture differs from CAKE because in this
case the hospital owns the data about patients, and patients specify the policies. In our
case, no authority is intended to manage the data except the data owners themselves — in
healthcare processes, e.g., they would be the patients. Pournaghi et al. [22] provide a
scheme based on blockchain technology and attribute-based encryption, named MedSBA.
Their architecture differs from ours for two main reasons. Firstly, MedSBA makes use
of two private blockchains, whereas we consider a public-blockchain scenario. Secondly,
they cipher the data with AES symmetric cryptography with a random key and then
they cipher that random key via ABE. By ciphering with the AES encryption scheme,
MedSBA does not allow different users to read the same message, or slices thereof.

7 Conclusion and future remarks

In this work, we have proposed CAKE, an approach that combines blockchain technology
and Attribute-Based Encryption (ABE) to control data access in the context of a multi-
party business process. Our approach also makes use of IPFS to store information
artefacts, access policies and meta-data. We employ Smart Contracts to store the user
attributes, determining the access granted to the process actors, and the link to IPFS files.
CAKE provides a fine-granular specification of access grants, data integrity, permanence
and non-repudiability, allowing for auditability with minor overheads.

An important aspect to analyse in future studies is the integration with alternative
encryption methods. For example, Odelu et al. [21] propose an RSA-based CP-ABE
scheme with constant-size secret keys and ciphertexts (CSKC). Their approach targets
high efficiency for limited-battery devices. The adoption of CSKC could be of help to
integrate IoT devices in the management of blockchain-based processes. Key-Policy
Attribute-Based Encryption (KP-ABE) [10] seems a promising asset for a more agile
management of the process instance identifiers (case ids). With KP-ABE, attributes are
associated with the ciphertext while the policy is associated with users, so the latter can
decrypt the ciphertext only if the attributes of the encrypted text satisfy the user policy.

We also plan to overcome existing limitations of our approach. If a Data Owner wants
to revoke access to data for a particular Reader, e.g., they can change the policy and
cipher the messages again. However, the old data on IPFS would still be accessible. To
overcome this limitation, we are considering the usage of InterPlanetary Name System

14 E. Marangone et al.

(IPNS), as it allows for the replacement of existing files, hence the substitution of a
message with a new encryption thereof. Furthermore, we plan to turn the SDM and
SKM into distributed components in order to make our architecture more robust. We are
investigating the adoption of secure multi-party computation schemes [6] to this end.

The integration of CAKE with existing blockchain-based process automation toolkits
such as Caterpillar [16], Lorikeet [27] and ChorChain [5] is an interesting research
avenue as well. CAKE can complement the control-flow-centric perspectives of the
above tools with the data access control facilities it provides. To this end, the automated
translation of task-based authorisation constraints to policies would be part of the
endeavour [30]. Lorikeet specifically includes methods for on-chain data management,
which CAKE can complement for confidential off-chain data. As we resort to IPFS to
store data, though, the integration should include oracles that permit Smart Contracts to
interact with off-chain data [19,1]. The system designer would then be able to determine
the trade-off between full transparency on the decision process and access control, by
balancing the on-chain and off-chain storage of data as discussed in [11]. Finally, we aim
to implement this system with other public blockchains in the future (e.g., Algorand [4])
and test this system with real-world multi-party business processes in production.

Acknowledgements. The work of E. Marangone and C. Di Ciccio was partially funded
by the Cyber 4.0 project BRIE and by the Sapienza research projects SPECTRA and
“Drones as a service for first emergency response”.

References

1. Basile, D., Goretti, V., Di Ciccio, C., Kirrane, S.: Enhancing blockchain-based processes with
decentralized oracles. In: BPM (Blockchain and RPA Forum). pp. 102-118 (2021)

2. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C., Rabin, T.,
Reyzin, L.: Can a public blockchain keep a secret? In: TCC (2020)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: SP.
pp- 321-334 (2007)

4. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.
777, 155-183 (2019)

5. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Engineering
trustable and auditable choreography-based systems using blockchain. ACM Trans. Manage.
Inf. Syst. 13(3) (feb 2022)

6. Cramer, R., Damgard, I.B., et al.: Secure multiparty computation. Cambridge University Press
(2015)

7. Dannen, C.: Introducing Ethereum and Solidity: Foundations of Cryptocurrency and
Blockchain Programming for Beginners. Apress (2017)

8. Di Ciccio, C., Cecconi, A., Dumas, M., Garcia-Bafiuelos, L., Lépez-Pintado, O., Lu, Q.,
Mendling, J., Ponomarev, A., Binh Tran, A., Weber, 1.: Blockchain support for collaborative
business processes. Informatik Spektrum 42, 182-190 (May 2019)

9. Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in
blockchain system. Journal of Network and Computer Applications 126, 45-58 (2019)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. IACR Cryptol. ePrint Arch. p. 309 (2006), http://eprint.
iacr.org/2006/309

http://eprint.iacr.org/2006/309
http://eprint.iacr.org/2006/309

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.
33.

Access Control on Blockchain 15

Haarmann, S., Batoulis, K., Nikaj, A., Weske, M.: Executing collaborative decisions confiden-
tially on blockchains. In: BPM (Blockchain and CEE Forum). pp. 119-135 (2019)

Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security
and Privacy (SP). pp. 839-858 (2016)

Li, B., Wang, Y.: RZKPB: A privacy-preserving blockchain-based fair transaction method for
sharing economy. In: TrustCom/BigDataSE. pp. 1164-1169 (2018)

Li, B., Wang, Y., Shi, P., Chen, H., Cheng, L.: FPPB: A fast and privacy-preserving method
based on the permissioned blockchain for fair transactions in sharing economy. In: IEEE Intl.
Conf. TrustCom/BigDataSE. pp. 1368-1373 (2018)

Lépez-Pintado, O., Dumas, M., Garcia-Bafiuelos, L., Weber, 1.: Controlled flexibility in
blockchain-based collaborative business processes. Inf. Syst. 104, 101622 (2022)
Lépez-Pintado, O., Garcia-Bafiuelos, L., Dumas, M., Weber, 1., Ponomarev, A.: Caterpillar: A
business process execution engine on the ethereum blockchain. Softw., Pract. Exper. 49(7),
1162-1193 (2019)

Madsen, M.E., Gaub, M., Hggnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: Collaboration
among adversaries: Distributed workflow execution on a blockchain. In: FAB. pp. 8-15 (2018)
Mendling, J., Weber, 1., Aalst, W.V.D., et al.: Blockchains for business process management -
challenges and opportunities. ACM Trans. Manage. Inf. Syst. 9(1), 4:1-4:16 (Feb 2018)
Miihlberger, R., Bachhofner, S., Ferrer, E.C., Di Ciccio, C., Weber, 1., Wohrer, M., Zdun, U.:
Foundational oracle patterns: Connecting blockchain to the off-chain world. In: BPM 2020
Blockchain and RPA Forum. pp. 35-51. Springer (2020)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://bitcoin.
org/bitcoin.pdf

Odelu, V., Das, A.K., Khurram Khan, M., Choo, K.K.R., Jo, M.: Expressive cp-abe scheme for
mobile devices in iot satisfying constant-size keys and ciphertexts. IEEE Access 5, 3273-3283
(2017)

Pournaghi, S., Bayat, M., Farjami, Y.: Medsba: a novel and secure scheme to share medical
data based on blockchain technology and attribute-based encryption. Journal of Ambient
Intelligence and Humanized Computing 11 (11 2020)

Rahulamathavan, Y., Phan, R.C.W., Rajarajan, M., Misra, S., Kondoz, A.: Privacy-preserving
blockchain based IoT ecosystem using attribute-based encryption. In: ANTS. pp. 1-6 (2017)
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and
public-key cryptosystems (reprint). Commun. ACM 26(1), 96-99 (1983)

Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. p. 457-473 (2005)
Stiehle, F., Weber, I.: Blockchain for business process enactment: A taxonomy and systematic
literature review. In: BPM Blockchain Forum (Sep 2022)

Tran, A.B., Lu, Q., Weber, L.: Lorikeet: A model-driven engineering tool for blockchain-based
business process execution and asset management. In: BPM Demos. pp. 56-60 (2018)
Wang, H., Song, Y.: Secure cloud-based ehr system using attribute-based cryptosystem and
blockchain. Journal of medical systems 42(8), 152 (2018)

Weber, 1., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted
business process monitoring and execution using blockchain. In: BPM. pp. 329-347 (2016)
Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN. In: BPM.
vol. 4714, pp. 64-79 (2007)

Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014), https:
//ethereum.github.io/yellowpaper/paper.pdf

Xu, X., Weber, L., Staples, M.: Architecture for Blockchain Applications. Springer (2019)
Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surv. 52(3)
(2019)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Fine-grained Data Access Control for Collaborative Process Execution on Blockchain
	1 Introduction
	2 Running example and problem illustration
	3 Background
	4 The CAKE approach
	5 Implementation and evaluation
	6 Related work
	7 Conclusion and future remarks

