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Abstract. ElectroEncephaloGraphy (EEG) signals have a nonlinear and
complex nature and require the design of sophisticated methods for their
analysis. Thus, Deep Learning (DL) models, which have enabled the au-
tomatic extraction of complex data features at high levels of abstraction,
play a growing role in the field of medical science to help diagnose var-
ious diseases, and have been successfully used to predict the vigilance
states of individuals. However,the performance of these models is highly
sensitive to the choice of the hyper-parameters that define the structure
of the network and the learning process. When targeting an application,
tuning the hyper-parameters of deep neural networks is a tedious and
time-consuming process.This explains the necessity of automating the
calibration of these hyper-parameters. In this paper, we perform hyper-
parameters optimization using two popular methods: Tree Parzen Esti-
mator (TPE) and Bayesian optimisation (BO) to predict vigilance states
of individuals based on their EEG signal. The performance of the meth-
ods is evaluated on the vigilance states classification. Compared with em-
pirical optimization,the accuracy is improved from 0.84 to 0.93 with TPE
and from 0.84 to 0.97 with Bayesian optimization using the 1D-UNet-
LSTM deep learning model. Obtained results show that the combination
of the 1D-UNet encoder and LSTM offers an excellent compromise be-
tween the performance and network size (thus training duration), which
allows a more efficient hyper-parameter optimization.

Keywords: Deep Learning models- Hyperparameter optimization- EEG-
Vigilance.
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1 Introduction

ElectroEncephaloGraphy (EEG) is the main modality for studying the electrical
activity of the brain. However, the classification of these states from this signal
requires sophisticated approaches in order to achieve the best performance. Deep
Learning (DL) approaches have shown a good performance in learning the high-
level features of signals [7] [18], particularly for EEG. They are characterized
by their large number of hidden layers that provide the most effective solutions
thanks to massive calculations.

One of the most powerful models in DL approaches is the Convolution Neural
Network (CNN). Thus, many studies have suggested CNN models for analyzing
the EEG signal. In [2], the authors utilized the concept of DL on EEG signals
to predict the driver’s cognitive workload. A CNN model was used to extract
features and accurately classify the cognitive workload.The experimental results
showed that the proposed system could provide an accurate classification of
high and low cognitive workload sessions. In [12], three types of deep covariance
learning models were suggested to predict drivers’ drowsy and alert states us-
ing EEG signals: the CNN, the Symmetric Positive Definite Network (SPDNet),
and the Deep Neural Network (DNN).The experimental results indicated that
all the three models of deep covariance-learning reported a very good classifica-
tion performance compared with shallow learning methods. In [14], the authors
proposed two DL models to predict individuals’ vigilance states based on the
study of one derivation of EEG signals: a 1D-UNet model and 1D-UNet-Long
Short-Term Memory (1D-UNet-LSTM). Experimental results showed that the
suggested models can stabilize the training process and well recognize the sub-
ject vigilance. Specifically, the per-class average of precision and recall could be
respectively up to 86% with 1D-UNet and 85% with 1D-UNet-LSTM. All these
studies have used several DL approaches to analyze EEG signals [12] [2] [14], but
the choice of the architecture has been done empirically by the human expert
through a slow trial and error process, guided mainly by intuition.

The success of the CNNs is highly dependent on the selection of the hyper-
parameters. Determining which hyper-parameters to tune and defining value
domains for those hyper-parameters, and then selecting the best set of values re-
quire meticulous design and experiment processes which can only be conducted
by the participation of an expert from the domain. The need for the automatic
design of CNNs is especially important for complex CNN architectures where
the parameter space is so large that trying all possible combinations is computa-
tionally infeasible. Much research has been done in the field of Hyperparameter
Optimization (HPO), such as grid search, random search, Bayesian optimiza-
tion, and gradient-based optimization [9] [4]. Grid search and manual search
are the most widely used strategies for HPO [9] [11]. These approaches make
reproducibility harder and are impractical when there are a large number of hy-
perparameters. Thus, many authors have focused on further automating the cal-
ibration of hyper-parameters. Particle Swarm Optimization (PSO) is among the
metaheuristics that has been successfully applied for the optimization of CNN
hyper-parameters. In [8], a parallel version of PSO algorithm was proposed for
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the hyper-parameter optimization of DL models to overcome two problems: (i)
the search space which is usually high dimensional, and (ii) the high runtime.
The experiments have revealed that the PSO would largely take advantage of the
rapidity offered by computational parallelization. Another PSO-based approach
used to configure the CNN architecture was introduced in [15]. The parameters to
be tuned are kernel size, padding, number of feature maps, and pooling patterns.
By using the PSO adaptation, authors achieved better results than those found
by AlexNet and got a high accuracy. In [10] an OLPSO (orthogonal Learning
Particle Swarm Optimization) approach was presented in which hyperparam-
eters values were optimized for both VGG16 and VGG19 networks for plant
disease diagnosis.Batch size and dropout rate are employed as hyperparameters.
Through practical experiments, the authors proved that their approach achieves
higher performance and accuracy compared to other methods tested for the same
data. The authors in [15] investigated lung nodule classification by proposing a
multi-level CNN whose hyperparameter configuration was optimized by using
a proposed Gaussian process with stationary kernels. The experiments demon-
strated that the algorithm outperformed manual tuning. TPE algorithm in [17],
has been proposed through Hyperas tool in order to optimize CNN hyperpa-
rameters to classify pulmonary nodules at an early stage. It was shown that the
smallest, more basic CNN architecture, just one convolutional layer following of
one max-pooling layer obtained the best results.The hyperas tool with the TPE
algorithm allowed to explore all the hyperparameters in the experiments and it
was important to achieve excellent results. Therefore, in this paper, we describe
the use of two popular methods: TPE and BO for automatically designing and
training DL models to predict individuals’ vigilance states from an EEG sig-
nal. Those algorithms are applied on the 1D-UNet and 1D-UNet-LSTM models
proposed in [14] to improve the classification performance.

This paper is structured as follows: Section 2 presents the materials and
methods and introduces the DL models successfully implemented for vigilance
state classification. It also defines TPE and BO optimization algorithm. Section 3
presents the data and the experimentation setup. Moreover, this section describes
the results of the optimized suggested model and elaborates the discussion based
on the obtained results. The last section concludes the paper and gives some
future perspectives.

2 Materials and Methods

One of the most important strategies used to estimate vigilance consists in using
physiological measures to give more precise data about the state of an individ-
ual. The sequential steps of the development of the automated vigilance state
detection system are: EEG data collection, pre-processing and classification by
DL,using hyperparameter optimization (see Fig. 1).

2.1 EEG signal acquisition and pre-processing

In this paper EEG signal is used to predict the vigilance states.This nonlinear
and non-stationary signal characterizes the brain activity through a weakly in-
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Fig. 1. EEG signal processing steps with HPO of DL models for vigilance state classi-
fication

vasive acquisition process, with electrodes placed along the scalp. To prepare
the dataset, we use the same two subjects (S1, S2) as those collected in the
experimentation of the previous work of our team [14] [5]. The EEG data are
directly recorded from 28 active electrodes from the scalp at the Department of
Functional Explorations of the Nervous System at Sahloul University Hospital,
Tunisia. This signal is recorded during three 24h periods with a 15 days interval,
and it involves two healthy male subjects aged between 18 and 23. For each sub-
ject, the signal is recorded for two states: vigilance state (VS) and drowsiness
state (DS). The EEG recordings are done, reviewed and approved by an expert,
in order to label the different levels of alertness. In this work, we focus on an-
alyzing a single EEG signal from the right parieto-occipital (Pz-Oz) electrode
used to characterize analyzed vigilance states. This choice is justified by the fact
that experts agree that this signal is the most appropriate to reflect a state of
vigilance and to enable the system portability [14] [5] [6]. In the first step of pre-
processing, we split the signal into time periods of four seconds (recommended
by an expert), in order to reduce the computation complexity. Then, we filter
this signal to eliminate artifacts using a high-pass filter to remove low frequen-
cies less than 0.1 Hz, and a low-pass filter to filter out frequencies above 21Hz,
in order to focus on frequencies most related to the state of alertness.Experts
agree that this range is one of the most relevant ranges for vigilance.The next
step of pre-processing is the spectral analysis of the signal which was proposed
in [14] [5]:

(i) The 512-point Fast Fourier Transform (FFT) is used to map the acquired
time-series EEG data f(t) to the frequency domain F'(u).

(ii) The frequency range [0.1 Hz, 21 Hz|, which is specific to the range of
physiological waves, is split into k elementary frequency bands to characterize
this electrical activity.

(iii) In each band [u;, u;t+1], the Spectral Band Power (PBS), which corre-
sponds to the sum of the spectral amplitudes belonging to the frequency band,
is calculated:

u; =01+ (G —1)%Au;i € [1..k
pps= 3 rwlk {4 wle 1.4

u€[us,uit1]

(iv) The Percentage of the Relative Spectral Power (PRSP) of each band is
computed, which is equal to the PBS divided by the total spectral power:
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PBS; .
PRSP; = Zre x 100, with TSP = > IF )|
u€(0.1,21]

where Au is the length of the frequency band (Hz), & is the number of bands, and
TSP represents the total spectral power.Thereby, the PRSP will be the input
to the classification tool for vigilance state detection, for each four second time
sample.

2.2 DL models hyperparameters

DL models are widely applied to various areas like computer vision, classification
and segmentation, since they have had great success solving many types of highly
complex problems. Among the most powerful models in DL approaches are the
CNN, in particular the 1D-CNN which has been well adopted in the literature for
processing EEG signals [16]. Its architecture is usually composed by a series of 1D
convolutional, pooling, normalization and fully connected layers. In this paper,
we use the 1D-UNet-LSTM DL model recently proposed in [14] and successfully
implemented for vigilance state classification.

1D-UNet-LSTM: The model presented in (Fig. 2) is a combination between
1D-UNet and LSTM.
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Fig. 2. 1D-UNet-LSTM architecture

The 1D-UNet-LSTM architecture takes the output of 1D-UNet (last layer) to
feed in as the input of the LSTM network. This latter is made up of five hidden
cells, where each cell is followed by a dropout layer to prevent overfitting. At the
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end, the 1D-UNet-LSTM architecture integrates a batch normalization layer, a
fully connected (dense) layer and Softmax layers to accomplish the classification
task.

Hyperparameters: The DL neural network have many hyperparameters, in-
cluding those that specify the structure of the network itself and those that
determine how the network is trained. As the training of these networks is slow,
it is difficult to adjust the hyperparameters. When training a network, the re-
sult of the model will depend not only on the chosen structure but also on the
training method, which itself has several hyperparameters such as the learning
rate, the loss function, the mini-batch size, and the number of training itera-
tions. Furthermore, the structure of the neural network itself involves numerous
hyperparameters in its design, including the size of each layer, the number of
hidden layers, the number of convolution layers, the kernel size, the filter size,
the activation function, the weight initialization, etc. Table 1 summarizes the
hyperparameters responsible for defining the structure of the network and those
related to the optimization and training process. Tuning the hyperparameters
of DL neural network is a critical and time-consuming process that has been
mainly done relying on the knowledge of the experts. This explains the necessity
of automating the calibration of these hyperparameters.

Table 1. Hyperparameters defining architectures (top) and training process (bottom)
of the neural network.

Hyperparameters Types Scope

Number of convolution layers|Integer 0,1,..,25

Number of LSTM layers Integer 0,1,..,25

Number of dense layers Integer 0,1,..,25

LSTM units Integer 32,,..,512

Optimizer Categorical/Integer| Adam, Rmsprop, Adadelta
Filter size Integer 64,128,..,1024
Kernel Size Integer 0,.....,10

Batch size Integer 10, 32, 64,128
Learning rate Float 0;1

Dropout rate Float 0;1

Activation function Categorical Relu, Sigmoid, Tanh

2.3 HPO Algorithms

Deep model design requires strong knowledge of algorithms and appropriate
hyperparameter optimization techniques. Several methods have been proposed
for HPO such as grid search [9], random search, simulated annealing [?], BO
[19] and TPE [3]. The TPE and BO success in expensive optimization problems
indicates that they may outperform existing methods.

TPE algorithm is a Sequential Model-Based Optimization (SMBO) approach.
SMBO methods sequentially construct models to approximate the performance
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of hyperparameters based on historical measurements, and then choose new hy-
perparameters to be tested based on this model. Consequently, the TPE is an
iterative process that uses the history of evaluated hyperparameters to create a
probabilistic model, which is used to suggest the next set of hyperparameters
to evaluate. Let assume a set of observations {(X(l),y(l)) e (x(k),y(k))}7 To
apply the TPE, the observation results are divided into good and poor results
by a pre-defined percentile y*.The TPE defines p(x | y) using the following two
probability density functions given by the equation:

l(z) if y<y*
g(z) if y>y*

Pl = {

Where [(z) is the probability density function formed using the observed vari-
ables {x(} such that y* > y® (=f (x)), and g(z) is the probability density
function using the remaining observations. Value y* is selected to be a quantile
~ of the observed y values satisfying p (y* >y) = v After that, the expected
improvement in the acquisition function is reflected by the ratio between the
two density functions, which is used to determine the new configurations for
evaluation.

BO algorithm tries to minimize a scalar objective function f(z) for z. De-
pending on whether the function is deterministic or stochastic, the output will
be different for the same input x. The minimization process comprises three
main components: a Gaussian process model for the objective function f(z), a
Bayesian update process that modifies the Gaussian model after each new evalu-
ation of the objective function, and an acquisition function a(x). This acquisition
function is maximized in order to identify the next evaluation point. The role of
this function is to measure the expected improvement in the objective function
while discarding values that would increase it. Hence, the expected improvement
(EI) is calculated as:

El(z,Q) = Eg [max (0, 1Q (Thest) — f(x))}

where Q is the posterior distribution function , xy ¢ is the location of the lowest
posterior mean and juq(2},eg¢) s the lowest value of the posterior mean.

Compared to a grid search or manual tuning, BO allows us to jointly tune
more parameters with fewer experiments and find better values[13].

3 Experiments and results

The implementation has been done to show the effectiveness of the HPO algo-
rithm used to improve the performance of vigilance state classification.

3.1 Experiment setting

We evaluate the hyperparameter optimization algorithms on the 1D-UNet-LSTM
architecture. This architecture is developed using Keras whose libraries are writ-
ten in Python. The experiments are achieved with an experimental implemen-
tation on a Pop Gaming laptop PC with an Intel 9th-generation Core 15-9300H
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processor, a NVIDIA GeForce GTX 1650 Graphics card and 8 GB Memory.
To tackle HPO problems, we use Optuna framework [1] , which provides many
HPO algorithms including the TPE and Sherpa [20] framework which provides
BO algorithm.

3.2 Results and discussion

This section describes the results obtained. We focus on two subjects [14] [5] with
the same size of observations in order to detect the vigilance states. The within-
subject vigilance state classification is applied to evaluate the performance by
different models, where each subject is taken separately and divided into 80%
and 20% of observations for training and testing, respectively. Table 2 presents
the hyper-parameter values obtained by the implemented DL models for the
two subjects. This table shows that Adam function is more often selected as
an optimizer, which justifies the effectiveness of this function. Furthermore, the
ReLU activation is selected for all implementations. We note that the hyper-
parameter values change between the models for the same subject. This proves
that the hyperparameters are specific to the utilized architecture. Furthermore,
the hyperparameter values vary between the subjects within the same DL model.
This proves also that the hyperparameters depend on the input data, even if we
work in the same context.

Table 2. Best hyperparameters configurations using TPE and BO algorithms

1D UNET-LSTM
TPE BO

S1 S2 S1 S2
Number of convolution layers 10 10 9 13
Number of LSTM layers 4 5 5 7
LSTM Units 100 64 150 125
Optimiser Adam Adam Adam Adam
Filter size 64 32 128 64
Kernel size 1 1 1 1
Batch size 10 10 64 10
Learning rate 0.002 0.003 0.002 0.001
Dropout rate 0.4 0.3 0.3 0.5
Activation function Relu Relu Relu Relu

Table 3 exposes the accuracy results obtained using HPO algorithms and
compared with the results before the optimization process for the 1D-UNet-
LSTM model. We note that the classification performance in terms of accuracy
is good using TPE and BO algorithms. Accuracy for subject S1 using TPE can
be up to 0.93 with 1D-UNet-LSTM.and with BO, Accuracy can be up to 0.97.
The accuracy gain with TPE can reach 12.5% and with BO can reach 15.51%
for subject S2 using 1D-UNet-LSTM compared to an implementation without
optimization.
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Table 3. Subject vigilance state classification Accuracy

S1 52
- — o~ - — _
HECEREEEE - EE IR RS
ZE|EE|E=|dE| 5 Sg|EF|EA|SE S8
= £ °R BH e
1D Unet-LSTM 0840109320973 | 98 | 13.6 | 0.735 )| 0.840 | 0.870 | 12.5 | 15.51

Table 4 describes the classification performance in terms of recall, precision
and F1-score using UNet-LSTM architecture for subject S1, which has the best
classification accuracy, as depicted in Table 2 (the per-model average is 0.956
using BO). This table shows that the precision can achieve 0.92 using 1D-UNet-
LSTM with HPO. The Precision gain is 13.41% using 1D-UNet-LSTM with HPO
(BO algorithm) compared to the same model without optimization.

Table 4. Performance measures of proposed models for subject 1

Recall Précision Fi-Score
g o 4 o |t B | & w N | o w =
ES B |a |Eo |2 | BQE |A |EBEg|a2 | B R |8 B4
20 o &S 25 | £0| & o ts| 85 | 20 . o) LS EF
5E|E (& |37 |°% |FmE & |37|°%|FE|g |8 |§7°8
& & & § & &
1D Unet- | 085 | 0.89 | 0902 | 44 57 [080]090]0924] 1.1 | 1341 | 081 | 0.894 | 0912 93 | 1LI8
LSTM

Given Table 3 and Table 4, we note that including an optimization phase of
hyperparameters allows to significantly improve the classification performance
for all subjects and for all implemented DL model. Indeed, these results show
that the iterative process of BO and TPE are suitable for our application.

4  Conclusion and Perspectives

In this paper, we have introduced and explored the potential of HPO algorithms
in order to give the best configurations of hyperparameters and to improve the
performance of vigilance state classification EEG signals. The HPO TPE and
BO have been applied to the 1D-UNet-LSTM model, and the optimal hyper-
parameter configuration has been generated. The experimental results in the
study have revealed that the performance of vigilance state classification has
been improved using the HPO BO method and the accuracy gain can reach
15.51% for subject S2 using 1D-UNet-LSTM compared to an implementation
without an optimization process. In the future, we will add more subjects for
further validation of the DL architecture with hyperparameter optimization. in
addition, we will evaluate more HPO algorithms in order to improve the system

performance.
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