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Abstract. This paper presents a K-Prototype assisted hybrid heuris-
tic approach called SLIM+KP for solving large instances of the Train
Unit Scheduling Optimization (TUSO) problem. TUSO is modelled as
an Integer Multi-commodity Flow Problem (IMCFP) based on a Di-
rected Acyclic Graph (DAG). When the problem size goes large, the
exact solver is unable to solve it in reasonable time. Our method uses
hybrid heuristics by iteratively solving reduced instances of the original
problem where only a subset of the arcs in the DAG are heuristically
chosen to be optimised by the same exact solver. K-Prototype is a clus-
tering method for partitioning. It is an improvement of K-Means and
K-Modes to handle clustering with the mixed data types. Our approach
is designed such that the arcs of the DAG are clustered by K-prototype
and each time only a small fraction of the arcs are selected to form the
reduced instances. The capabilities of this framework were tested by real-
world cases from UK train operating companies and compared with the
results from running an exact integer solver. Preliminary results indicate
the the proposed methodology achieves the same optimal solutions as
the exact solver for small instances but within shorter time, and yields
good solutions for instances that were intractable for the exact solver.

Keywords: Train Unit Scheduling · Hybrid Heuristics · Clustering ·
K-Prototype

1 Introduction

Many studies on passenger rolling stock scheduling in recent years have focused
on Multiple Train Units (TU) which are the most commonly used passenger
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rolling stock in Europe and many other countries, because of their well-known
advantages over traditional locomotives/wagons such as formation flexibility, en-
ergy efficiency, acceleration and shorter turnaround times. A TU is a reversible
non-splittable fixed set of train cars, which can be coupled/decoupled with other
units of the same or compatible types if it is needed. Nonetheless, railway oper-
ators still have to face high costs associated with leasing, operating and main-
taining their fleets. Hence, an optimal schedule of these TUs reduces operation
cost. Given a daily timetable of trips, a fleet of several types of TUs, routes,
and station infrastructure: Train Unit Scheduling Optimization (TUSO) aims at
determining an appropriate assignment plan such as each trip is covered by a
single or coupled units in order to satisfy the passenger demand [31]. Note that
TUSO is an NP-hard problem as is proved in [39, 7, 33].

One way for solving the TUSO problem in the UK’s railways is a two-phase
decomposition framework [29, 31], wherein the first phase the assignment of train
units to trips is carried out ignoring some station layout details [31]. In the
second phase, the fleet assignment is implemented taking account of station in-
frastructure to deal with shunting movements, unit permutation in a coupled
formation and blockage of units, [28]. In this research we focused on the first
phase. The aforementioned network flow level TUSO problem can be formulated
as an Integer Multi-Commodity Flow Problem (IMCFP), which is based on a
Directed Acyclic Graph (DAG) [7] representation, where the problem size is de-
termined by the number of arcs. In [33], a branch-and-price method is designed
to solve exactly small or medium-sized TUSO instances, but it is difficult to
handle large instances due to its exact nature. In order to deal with this limi-
tation, in [15] a hybrid heuristic approach called Size Limited Iterative Method
(SLIM) is developed. In every iteration, the exact solver solves a reduced prob-
lems fast and comfortably, followed by an evaluation and modification of the arcs
subset which is to be fed to the next iteration, such that the objective function
will be no worse. Finally, the subset of arcs will converge to what is very close
to an optimal solution. Local knowledge such as location, time, path of train
connections in the DAG is used to decide which arcs are included in a reduced
instance. For instance, arcs can be partitioned based on their time bands and in
one particular iteration, all arcs from a band are included. This is referred to as
“wheel rotation”.

In this paper, we propose a novel approach for wheel rotation using K-
prototype clustering. K-Prototypes is an upgraded version of K-Means [35] and
K-Modes [21] suitable for mixed data types. It calculates the distance between
numerical features using Euclidean distance (similar to K-means), but also cal-
culates the distance between categorical features using the number of matching
categories [22]. Based on their attributes, DAG arcs are thus grouped into clus-
ters which are further used for creating reduced instances. This avoids explicitly
using local knowledge to design strategies about which arcs to add in an iteration
and thus the wheel rotation process is more generalised. Experiments based on
real-world data from UK train operators show that the clustering-based SLIM
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often outperforms the exact solver and can even successfully solve difficult large
instances on which the exact solver will fail within reasonable time.

The remainder of this paper is organized as follows. A literature review is
provided in Section 2, next we formally describe the problem in Section 3. Our
solving approach is presented in Section 4. This is followed by an illustrative
experimental evaluation provided in Section 5 and by conclusions in Section 6.

2 Literature Review

2.1 Rolling stock scheduling

There are several variants of problems studied involving rolling stock (train unit)
planning in the literature. [39] first formulates the the rolling stock circulation
problem (RSCP) as an integer multi-commodity flow problem on a single line
with up to two train units that can be coupled. The objective is to minimize the
number of units used. Issues such as train composition, attaching/detaching of
units and unit blockage are not directly considered. A similar problem to [39] is
studied by [4] and proposes an extended model where by introduce the concept
of transition graph, unit orders in a coupled formation can be considered. [20]
studies a variant RSCP where combining and splitting of trains are considered
with a mixed integer programming model. [37] extends the problem scenarios of
RSCP from a single line to multiple lines. Unit inventories are also described by
extra decision variables. Branch-and-price is used to solve several real-world in-
stances. The train unit assignment problem (TUAP) is first studied in [9], where
it presents an integer multicommodity flow model. Since the maximum number
of coupled units per trip is two, LP-relaxation can be enhanced in a precise man-
ner with regard to the knapsack constraint [8]. Real-world instances of an Italian
regional train operator with fleets of up to ten separate unit types and timetables
containing 528-660 trains were solved. In [31], a two-phase strategy is presented
for TUSO, in which the first phase allocates and sequences train trips to train
units while temporarily disregarding station infrastructure specifics, while the
second phase concentrates on completing the remaining station detail needs. In
[33], a customised branch-and-price method for resolving the TUSO network
flow level is given. Local convex hulls are utilised to enhance weak LP-relaxation
bounds [32]. In [30], TUSO with bi-level capacity needs is investigated. In [28],
station level unit conflicts are resolved by a feedback mechanism with added
cuts. For larger and harder TUSO instances, a hybridized algorithm called size
limited iterative method (SLIM) is developed in [16, 12]. It explicitly uses local
knowledge such as location and time band to create small instances and is able
to solve difficult instances failed by the exact solver.

2.2 Hybrid heuristics

The term of Hybrid Heuristics, or Hybrid Meta-heuristics [41, 11] normally refers
to a class of algorithms for solving challenging combinatorial optimization prob-
lems. In a narrower sense, however, hybrid heuristics can be described as a
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solution method in the following context: There is an exact solver available for
solving the problem. However, due to the NP-hard nature of most combinatorial
optimization problems, it can only solve small to medium instances. Therefore,
an auxiliary heuristic method is developed to reduce the problem sizes in an
iterative manner such that the small instances can be solved quickly and com-
fortably by the exact solver. In the early iterations, the solution quality from
the reduced instances is often poor. However, the reduced instances are updated
by customized search strategies in a way that in the final rounds of iterations
most components needed for deriving optimal or near-optimal solutions will be
included in the reduced instances.

A hybrid heuristic approach called PowerSolver is proposed in [26] for deal-
ing with large and/or complex train driver scheduling problems. The relevant
driver scheduling problems are solved by column generation [17] where a column
represents a potential driver shift (duty). The corresponding set covering ILP
model could have billions of columns, making the problem unsolvable. Power-
Solver generates a series of tiny refined sub-problem instances that are fed into
an existing efficient ILP-based solution. The usage of most relief opportunities
(ROs, where/when a driver change can take place) is prohibited in problem in-
stances, which reduces their sizes. A minimal collection of ROs is preserved in
each iteration such that the following solution is no worse than the current best.
A customized approach can help control the use of banned relief opportunities. It
will also relax some of the restrictions placed on the problem instance before it is
solved. PowerSolver provides a key step in fully automating the driver schedul-
ing of UK train operators in large/complex real-world scenarios. It has been
successful with many railway companies and has been routinely used as a key
component of TrainTRACS, a commercial crew scheduling software suite [25]. A
general hybrid metaheuristic method named Construct, Merge, Solve & Adapt
(CMSA) is proposed by [6] for solving combinatorial optimization problems.
CMSA generates a smaller sub-instance of the problem, which has a solution
that is also feasible to its parent problem. A high quality solution is obtained by
iteratively applying an exact solver to the reduced sub-instances. Strategies are
designed such that feedback based on the results of the exact solver in a previous
iteration will be provided to guide the parameter settings in next iteration. The
effectiveness of CMSA was tested by two exemplar problems: the minimum com-
mon string partition problem and the minimum covering arborescence problem.
From the experiment results, it is demonstrated that CMSA can achieve similar
performance compared to the exact solver for small to medium sized instances,
while its performance is significantly better than the exact solver when it came
to large instances. See [3, 19, 5, 18] for recent research using CMSA.

2.3 K-Prototype clustering

K-Prototype was first proposed in [22], which combines K-Means (for numerical
data) [35, 34] and K-Modes (for categorical data) [21]. The part for clustering
categorical data was later improved by [10]. K-Prototype is able to cluster data
of mixed types. Assume there are two mixed-type objects X and Y described by
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their attributes Ar
1, A

r
2, . . . , A

r
p, A

c
p+1, . . . , A

c
m (the fist p attributes are numerical

and the remaining m− p are categorical). Let xj and yj be the value of the j-th
attribute of X and Y respectively. The distance between X and Y is measured
by

d(X,Y ) =

p∑

j=1

(xj − yj)
2 + γ

m∑

j=p+1

δ(xj , yj). (1)

The first term is the (squared) Euclidean distance on numeric attributes
while the second is a simple matching dissimilarity measure on the categorical
attributes, i.e. δ(xj , yj) = 0 if xj = yj (same category) and δ(xj , yj) = 1 other-
wise. Weight γ is used to adjust the importance of the two types of attributes.
Suppose the target number of clusters is given by K > 0, and there are n ob-
jects, the goal is to find the attribute values of each “centrtoid” of cluster l for
attribute j, denoted by qlj and whether an object i belongs to cluster l or not,
indicated by binary variables wil ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ l ≤ K such that the
total distance is minimised by [22].

min
w,q

K∑

l=1




n∑

i=1

wil

p∑

j=1

(xij − qlj)
2 + γ

n∑

i=1

wil

m∑

j=p+1

δ(xij , qlj)


 (2)

subject to

K∑

l=1

wil = 1, 1 ≤ i ≤ n. (3)

The appropriate number of clusters K can be determined by the “elbow method”
[24]. For the recent development of algorithms for clustering data with mixed
type, see surveys [2, 38].

As a kind of machine learning algorithm for processing data, K-Prototype
has been applied in various data science research, most of which are out of the
scope of our paper. Apart from data science, there are a few cases where K-
Prototype is used for applied problems. In [23], it assists optimising pavement
lifecycle planning. [27] applies K-Prototype for the identification and analysis
of vulnerable populations for malaria. In [40], K-Prototype has been applied
in detecting anomaly intrusion activities. As far as the authors are aware, no
application of K-Prototype has been used in improving optimisation algorithms
for railway planing and management problems.

3 Problem Description

Train unit scheduling optimization (TUSO) concerns the assignment of train
units to cover all the trips for an operational day, aiming at using the minimum
number of train units while reducing the operational cost. It also allows the
possibility of coupling and decoupling activities to achieve optimal use [31].
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Our approach transforms the background problem TUSO into an Integer
Multi-commodity Flow Problem (IMCFP) based on an initial DAG G = (N ,A),
where the set N contains all the nodes (trips and sign-on/off nodes) and the
set A contains all feasible arcs (feasible connections between nodes). Figure 1
illustrates a sample instance of five trips. More specifically, the node set N =
N0

⋃
{s, s′}, where N0 represents the set of trips, and s and s′ the source and sink

nodes, respectively. Beside, each node is labelled with station origin/destination
and also departure/arrival time. The arc set is defined as A = A′

⋃
A0, where

A′ = {(i, j)|i, j ∈ N} is the connection-arc set and A0 = {(s, j)|j ∈ N} ∪
{(j, s′)|j ∈ N} is the sign-on/off arc set. Each arc (i, j) stands for the potential
linkage relation between trip i and trip j to be served by the same TU at the same
station (same-location arc) or different stations (empty-running arc). Observe
that the dashed arrow in Figure 1 represents an empty running arc.

Moreover, each arc a is labelled with the slack time at, which corresponds
to the difference between the trip departure time of the successor node and the
trip arrival time of the predecessor node, and cost ac, which is defined by the
waiting or empty running time between two trips linked by a. In the case of
empty running arcs, the cost also considers the mileage. Finally, an s− s′ path
in G represents a sequenced daily workload (the train nodes in the path in G) for
a possible unit schedule or diagram and the flow on it indicates the number of
units used for serving those trains. The set of commodities K represents the set
of TU types allowed. Note that a solution of IMCFP is a sub-graph of G such
that all nodes are connected by paths from s−s′. Therefore, the optimal solution
is the most compact sub-graph of G, where compact refers to one minimum-cost
subgraph. More details about the IMCFP and the DAG representation can be
found in [33].

Fig. 1. Example of the initial DAG for an instance with őve trips
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4 Methodology

The proposed methodology is based on the hybridization technique introduced
in [12, 13]. This methodology relies on the iterative resolution of sub-instances
of the original graph instance G. In each iteration, from a graph solution or
Essential Graph G, which is characterised by containing an Essential number
of arcs, an Augmented Graph Ĝ is constructed by extending the G up to a fraction
µ of | A(G) | in such way that | A(G) |<| A(Ĝ) |≪| A(G) |. Therefore, solving the

problem on Ĝ yields a graph solution G
′

which will be at least as good as G and,
after few iterations, it is expected to reach high-quality (sub-)optimal solutions
in reasonable time.

The general SLIM+KP algorithm is described in the following and pseudo-
coded in Algorithm 1. This requires the following input parameters: stopping
criteria; lmax, that stands for the size of ranked solutions list; the aforementioned
augmentation rate µ; and th, that is the number of sub-problems concurrently
solving. The main loop works as follows: an initial feasible solution G0 is inserted
in the list of ranked solutions in lines 3-4 of Algorithm 1. The initial solution
is constructed based on a first-in-first-out (FIFO) greedy heuristic [36, 20]. Dur-
ing the extraction phase of each iteration (lines 5-10), the algorithm randomly
chooses an incumbent solution G from the ranked list L. Then the algorithm pro-
duces Ĝ (augmentation phase), which is sent to exact method [33] to be solved.

The exact solver yields a solution graph G
′

and the algorithm iterates until one
stopping criterion is satisfied.

Algorithm 1 SLIM+KP

Require: G, lmax, µ, th
Ensure: G∗

1: L← emptyList(lmax)
2: Q← emptyList(th)
3: G0 ← initialSolution(G)

4: L← insertSorted(⟨G
0

⟩, L)
5: while not endCriteriaReached() do

6: G ← extraction(L)

7: Ĝ ← augmentation(G, µ)

8: Q← sendToExactMethod(Q, Ĝ)
9: while th =| Q | do

10: ⟨G
′

1, . . .⟩ ← anyGraphSolutionReady?(Q)
11: end while

12: L← insertSorted(⟨G
′

1, . . .⟩, L)
13: end while

14: G
∗

← best(L)

The heuristic controller holds the extraction and augmentation phases. In
the extraction, the incumbent G is chosen from the solution list L. This action
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can be carried out using a solution randomly chosen overall graph solutions
uniformly distributed in L. Regarding the augmentation phase, the augmented
graph Ĝ = (N̂ , Â) is built by setting the set N̂ equal to set N and the arc set

Â = A ∪ H is extended by means of the set H ⊂ A; as mentioned before, this
set | H | is limited by the µ· | A(G) |. The set H is formed using a designed
arc selection operator applied on arc clusters. This operator starts by selecting
a random cluster in the first step, and collecting the arcs from this cluster as
circular list in the second step. The construction of the clusters was carried out
using K-Prototype methodology [22], which is carried out before executing the
algorithm. As mentioned in Section 2.3, K-Prototype is a clustering method to
deal with mixed data types. We have used the attributes contained in each arc
to create the clusters. The description of these attributes is included in Table 1.
Recall that each arc v = (A,B) that links two trips A and B represents that the
train units of trip A will also perform trip B.

Attribute Description Type

idA identiőer of trip A C

locA location of arrival trip A C

arrA arrival time of trip A to locA N

banA

"true" if location locA is banned for
coupling/decoupling operations, o/w "false"

C

idB identiőer of trip B C

locB location of departure trip B C

depB departure time of trip B from locB N

banB

"true" if location locB is banned for
coupling/decoupling operations, o/w "false"

C

slacktime difference between arrA - depB N
Table 1. Summary of the arc attributes used by K-Prototypes method for a given arc
(A,B) between trips A and B. łCž: categorical, łNž: numerical.

5 Computational Experiments

To check the effectiveness of the proposed K-prototype assisted hybrid method-
ology, we have solved several instances from the data set described in [14], and
we have compared our results with those obtained with the standalone exact
method [33]. These instances differ in the number of nodes, arcs and fleet size.
In order to solve each instance, we first create a partition of its arc set. For this
purpose, we use the previously mentioned K-Prototype method [22]. In addition,
to determine the optimal number of clusters, we have used the elbow method on
the cost function provided by this method. Second, the instances are solved with
the exact method within a maximum time of 2 hours. Finally, we repeat each
experiment with SLIM, considering the previously generated clusters as heuristic
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arc-selection operators, and setting the stopping criteria to the maximum time
of 30 minutes. Regarding software, the exact method has been implemented in
Mosel 3.0 and uses the Xpress MP 7.9 solver. SLIM has been developed in C#,
while the K-Prototype method was included in the Python 3.6 module kmodes

[1]. All the experiments have been performed on a computer with Windows Home
11, CPU Intel(R) i7-8750H and 16GB of RAM memory.

Results are shown in Table 2, which contains the following information for
each instance. The first column refers to the instance name, which include the
number of nodes and arcs (node#_arc#_type#). Second and third columns re-
fer to the results obtained by the exact method and indicate the objective func-
tion value and the fleet size, respectively. Finally, the last three columns present
the results obtained with the proposed K-prototype assisted hybrid methodol-
ogy, indicating the number of clusters, the objective function, and the resulting
fleet size. Observe that, for the cases where the exact solver achieves optimal
solutions, the proposed hybrid methodology yields the same optimal objective
values, and SLIM+KP is able to yield solutions for instances that are intractable
for the exact solver.

Exact Method SLIM +K-Prototype

Instance Obj Fleet #clusters Obj Fleet

499_20151_2 - - 4 85.747 85
510_2708_2 - - 4 154.68 152
100_2164_1 19.412 18 4 19.412 18
358_3871_2 44.302 44 4 44.302 44

Table 2. Computational results from SLIM+K-Prototype and exact solver (exact
solver ran for 120 min and SLIM+KP ran for 30 min)

6 Conclusions and future research

We have presented a K-Prototype assisted hybrid heuristic approach SLIM+KP
to solve large instances of the Train Unit Scheduling Optimization problem.
This problem can be modelled as an IMCFP based on a DAG, where each
node represent a train trip and each arc (i, j) stands for the potential linkage
relation between trip i and trip j to be served by the same train unit. For a fixed
number of nodes, the higher the number of arcs, the higher the complexity of the
problem. In order to solve large size instances, our hybrid methodology iteratively
reduces the number arcs of the initial DAG and solve the problem based on the
reduced graph by the exact method presented in [33]. The arc set is partitioned
by means of the K-Prototype, a clustering method that can handle mixed data.
This partition will then be the basis of the proposed K-Prototype assisted hybrid
heuristic approach since arcs are selected depending on the cluster they belong
to. By performing computational experiments on real-world cases from UK train
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operating companies, we have compared our hybrid implementation against the
exact solver [33]. The methodology has succeeded in achieving the same optimal
solutions for small instances that could be solved exactly but with only about a
quarter of time, and yields good solutions for instances that were intractable for
the exact solver.

Future research includes more sophisticated strategies in SLIM+KP and to
extend the applied cases to even larger real-world instances. We are also inter-
ested in further proposing an even more generalised approach for partitioning
solution space (wheel rotation) for hybrid heuristics based on clustering and
other methodological/algorithmic methods.
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