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Abstract. Artificial intelligence (AI) has a potential for impact in the diagnosis of neurologi-

cal conditions, the academic consensus generally has a positive outlook regarding how AI can 

improve the care of stroke victims and those who suffer from neuro-degenerative conditions such 

as dementia. These technologies have tangible applications in improving the welfare of epilep-

tics, epilepsy being a common neurological condition that can result in premature death without 

a quick response. As such it is important for the system to avoid false negatives, ie. falsely diag-

nosing that the subject is fine when having a seizure. This investigation focused on how machine 

learning algorithms can be utilised to identify these events through Electroencephalography 

(EEG) data. The UCL/Bonn dataset, a classic benchmark for automated epilepsy detection sys-

tems was identified and utilised. This investigation focused on the random forest algorithm a 

popular technique to allow for pattern detection and classifcation. Given that EEG neurological 

data represents time series data and machine learning excels at this task, automation could be 

achievable. From there, Fast Fourier Transforms (FFT) were applied to identify if spectral fea-

tures of EEG signals would aid identification of seizures. This method achieved an accuracy of 

99%, precision of 99% and a recall of 100% in 12.2 milliseconds time to classify and one second 

of EEG data. These results show that random forests combined with FFT are a viable technique 

for attaining high recall, thus minimising false negatives specifically, when detecting grand mal 

epileptic seizures in short periods of time.  

Keywords: Epilepsy, Seizure Detection, Random Forest, Fast Fourier Trans-

fomrm (FFT), Artificial intelligence (AI) 

1. Introduction 

Epilepsy is a group of neurological conditions that result in recurrent seizures of various mag-

nitudes. This condition displays heterogeneity in outcome, this is caused by sheer variation of 

source within the brain meaning that they can result in anything from relatively minor behav-

ioural infringements to life threatening arrests. The cause usually is a form of neurological dam-

age that can lead to either increased or reduced sensitivity to stimulus triggering a chain reaction 

that spreads throughout an area of the brain as discussed in [1] by Thjis et-al. The size of the area 

in the brain is related to the magnitude of the seizures as seen also in [1]. This family of conditions 

is relatively common throughout society with the World Health Organisation (WHO) estimating 
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that 70 million people globally have some form as discussed in [2]. By in large, epileptic condi-

tions are treatable with conventional medications, reducing the magnitude of the seizures or stop-

ping them completely. However, there is a significant minority that will endure the condition 

throughout life experiencing a diminished quality of life with the treatment itself inducing side-

effects as well as social barriers being imposed [1].  

Epileptic seizures can be hazardous in of themselves; however, injuries can also be sustained 

from the uncontrolled nature of collapse, serious head injuries as a result can be sustained that 

prove fatal. Care is also hampered by the unpredictability of seizures with forewarning being 

limited often to the moments leading up to an event, often known as an “aura”, a grace period 

that allows for preparation. The seizures themselves, in nature, can be unpredictable, individuals 

prone to tonic-clonic seizures are not excluded from experiencing an entire spectrum of seizures 

from absence to full tonic-clonic arrests. Thus, there is vested research interest into technological 

solutions capable of predicting when a seizure is likely to occur or otherwise provide prompt 

warning to carers as to if one has occurred. There are also applications within the healthcare 

profession where automatic epileptic event detection can speed up identifying of activity allow-

ing for quicker diagnosis. Fig 1 illustrates the diversity epileptic conditions. 

 

 
Fig 1. The International League Against Epilepsy framework for the classification of epileptic 

seizures [3] 

There are numerous signal types that can either implicitly or explicitly suggest that a seizure 

event has occurred, some academics elect to follow implicit, indirect signals related to motion 

and temperature changes related to possible tonic-clonic activity, the embrace2 watch [4] takes 

such an approach whilst others work with explicit, direct signals from the brain itself utilising 

Magnetic Resonance Imaging (MRI) and Electroencephalography (EEG) [1]. Prediction and 

medication are typically done utilising EEG, this involves several electrodes being placed directly 

on to an individual’s scalp to monitor the electrical activity occurring. Identification is made 

possible through specific signal traces that correspond with an event occurring, helping to 
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segregate signals that correspond with normal and abnormal functions. Seizures have four types 

defined by their amplitude levels, these are the preictal, postictal, ictal and interictal stages as 

discussed in Deivasigamani’s paper [5]. Preictal stage is related to before the seizure occurs, the 

ictal stage relates to the onset of an attack and the postictal follows this stage as discussed. Inter-

ictal stage is referred to as the first ictal occurring stage. Currently it is understood that seizures 

can be identified as early at the preictal stage [5]. Prediction and searching for signals that antic-

ipate seizures takes significant periods of expert time, an expert can often take days, weeks or 

even months to analyse the output of EEG signals. In addition, people can often overlook events 

by accident as well as due to the enormity of the data itself as seen in [6] by Gajic et al. Due to 

these factors, there has been a push to incorporate automation to effectively minimise the cost 

and human effort involved in the process. Another point of interest to epilepsy experts, as dis-

cussed above, is the location and then spread of an event. The location and spread defines what 

the outcome of an event will be, with localised seizures generally manifesting in events such as 

absences and small localised arrests, these are often referred to as focal-point seizures. Non-lo-

calised seizures can engulf entire portions of the brain and tend to result in tonic-clonic, otherwise 

known as “grand mal,” seizures. These result in the typical rhythmic muscular driven convul-

sions. Beghi discussed this in [7]. 

Benefits of using EEG for epileptic seizures stem from their cost, portability and show clear 

interpretable patterns in the frequency domain according to [8] by Shoeibi et-al. Therefore, this 

is particularly relevant as pervasive computation and the Internet of Things (IoT) continues to 

proliferate society, offering new automation opportunities as well as those that can potentially 

benefit, not only epileptics, but others that fall prey to similar neurologically driven events. This 

paper is structured as such, with Section 2 discussing related works in the field, Section 3 dis-

cusses the methodology of the investigation, Section 4 discusses the simulation results and finally 

conclusion and future works is discussed in Section 5, Overall, this report shows and discusses 

the results from applying the Random Forest algorithm with spectral features extracted by Fast 

Fourier Transform (FFT) to a dataset of EEG signals derived from epileptic seizures through 

electrodes placed on the scalp. 

       The process of taking an EEG involves the placement of conducting electrodes fixed with 

adhesive to the subject’s scalp the number of which varies depending on how much area detail is 

necessary. Therefore, data can vary from set to set depending on the experiment carried out. 

Table 1 shows a selection of literature related to the study of random forests regarding this area, 

the Bonn dataset to be used and the implementation of Fast Fourier Transforms. The benefits of 

these implementations are that for a clinical situation involving considerable time to diagnose, 

this dataset uses 23 seconds of data in its unprocessed form from which classifcations can be 

made, accurate results can be obtained often as high as the late nineties or even 100% as can be 

seen in [11] and [13]. However, an epileptic going about their daily activity does not benefit 

themselves from this innovation. 23 seconds is a considerable period of elapsed time during a 

seizure event, given that time management is crucial, the air passage could be restricted due to 

the tongue being swallowed or bitten, and attention is deemed urgent so measures can be taken 

to reduce risk. The UCI/Bonn modified dataset considers a single second of time to make prompt 

decisions which is more relevant to the individual. Therefore, time to classify will be considered 

in this project in addition to accuracy, specificity etc. 
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Table 1. A selection of pertinent literature regarding this field  

Classifier Features Performance 
(%) 

Metric Dataset 

ELM and BPNN 
[9] 

Sample Entropy 95.6 Accuracy Bonn 

Random Forest 
[10] 

STFT, mean, energy 
and standard  
deviation  

96.7 Accuracy Bonn 

LS-SVM [11] FFT and DWT ~100 Accuracy Bonn 

Random Forest 
[12] 

Intrinsic Mode 
Functions 

98.4, 
98.6,  
96.4 

Sensitivity, 
Specificity, 

Accuracy 

Bonn 

Random Forest 
[13] 

L1-Penalised Robust 
Regression 

100 Accuracy Bonn 

 

2. Methodology 

In this paper, a detection mechanism is proposed that tends to focus on the diagnosis of seizure 

activity and discards classifying whether a seizure is tonic-clonic etc. The reasoning behind this 

is because an epileptic event, regardless of magnitude, tends to be significant event to the indi-

vidual and the professional team in the greater picture. Given that a tonic-clonic seizure is a 

specifically profound event at any time during an epileptic’s life with the condition, the other 

types of seizure are indeed just as relevant in long term analysis. The data regarding absences or 

otherwise can often indicate a change in status or a progression in the condition, if an epileptic 

has been on medication for a significant period, successfully managing the condition in doing so, 

then has even a light episode it could be cause for concern driving a shift in medication or other-

wise. These seizures can also be a pre-emptive sign of a larger seizure incoming thus giving an 

opportunity for proactive care rather than reactive, this could be the difference between someone 

surviving and succumbing to the infliction. This simplifies the classification process in of itself 

in terms of functionality, rendering it from a multiclass to a binary classification problem.  

The process of experimentation is as seen in fig 2. 

 

 
Fig 2.  process diagram of the algorithm utilised 

3.1. Dataset    

Datasets are key in developing an adept learning system. An AI agent can only act as far as it 

has been trained properly to perceive. The demands of the dataset are dependent on several fac-

tors, application being one of them as the complexity of the system is directly related to this 

aspect, sitting down as still as possible in a clinical setting produces significantly different 
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demands from a subject in motion, carrying out day to day activities. This simple caveat adds 

significant volumes of noise to a reading that can affect the machine learning process. Therefore, 

an application to be developed for this purpose of everyday diagnosis in life would need to have 

the relevant data, unfortunately this data is not readily available online with most readily availa-

ble datasets focusing on a clinical environment application. A readily available dataset appropri-

ate for basic seizure differentiation is the Bonn/UCI dataset as can be seen here [14]. Although it 

does not offer the movement data required to make a system suitable for everyday care it offers 

several advantages in that it has already seen data preparation to a degree for such training oper-

ations, this renders it time efficient as the pre-processing of data can take considerable time in of 

itself. Another aspect of simplicity is that it has been pre-rendered down to two-dimensional data, 

each line is a time-series datapoint which renders it simpler to interpret. The Bonn/UCI dataset 

also has five classes to differentiate from, these are as follows in table 2, whilst fig 3 illustrates 

the variation between signals of each class: - 

 

Table 2. The five classifications in the Bonn Dataset [14] 

Class Value Description of Activity 

1 Recording of seizure activity. 

2 They record the EEG from the area where the tumour was located. 

3 Yes, they identify where the region of the tumour was in the brain and re-
cording the EEG activity from the healthy brain area. 

4 Eyes closed, means when they were recording the EEG signal the patient had 
their eyes closed. 

5 Eyes open, means when they were recording the EEG signal of the brain the 
patient had their eyes open. 

 

Given that the latter groups 2-5 correspond with non-seizure data, converting them all into class 

2 is enough to turn the problem into a binary issue. This has the effect of creating a large imbal-

ance in the dataset, a ratio of 4:1 in favour of events unrelated to seizures, this was addressed by 

utilising oversampling of the minority class so that the split became a 1:1 ratio. Other caveats in 

terms of practicality in data is that epilepsy in of itself, is not merely driven by a given pattern 

throughout all epileptics, it is a diverse family of conditions, this means for an accurate system 

to be developed a large data set must be employed with as much seizure data as possible which 

represents are generalised tool which will not be applicable for all epileptics. Another option 

would be to train a highly specialised algorithm on as much individual data possible for a subject 

which would be a considerable project in labour and cost but would be bespoke to a given subject.  
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Fig 3. Illustration of signal from each class and the differences between each 

3.2. Fast Fourier Transform (FFT) 

Having pre-processed the data, Fast Fourier Transform (FFT), an algorithmic technique com-

monly utilised in various digital signal processing applications, is applied for signal decomposi-

tion. The core principle of an FFT is to implement a fast computation of Discrete Fourier Trans-

form (DFT) coefficients, expressing a function as a sum of periodic components using the func-

tion stated in equation 1 as brought forward by Cooley and Tukey in [15]. 

 

𝑦[𝑘] = ∑ 𝑒−2𝜋𝑗
𝑘𝑛

𝑁
𝑥[𝑛]𝑁−1

𝑛=0  [1] 

 

Where Y[k] is the FFT coefficients, N is the total number of input EEG samples, n is the 

signal sample index. Using this method, spectral features can be extracted from the time series 

data that allows for an alternate perspective to be taken on the EEG data. Transforms, in general, 

are widely implemented in the machine learning community Fourier and Wavelet transforms 

being readily available in addition within common libraries. Rationale for specifically choosing 

FFT is due to the fact it is a faster derivative of the DFT. The Discrete Wavelet Transform (DWT), 

an alternative algorithm utilised in this application, was not implemented because the lattice filter 

results in a loss of spectral resolution and, thus, can reduce the accuracy of the classification 

process, this can be seen in [16]. Also, given that FFT’s time complexity is given by 

O(N*log2(N)), and DWT is given by O(N) this represent represents a compromise between ac-

curacy and time, this could be justified by caveating that missing a severe seizure is riskier than 

the benefit from gain in processing time. The importance of a quick response within the epileptic 

community is well known as time can be relative to the harm caused because of seizure. The 

longer someone is arrested in seizure the higher the risk comes and therefore, the care needs 

change from something that can be handled privately to requiring an ambulance for emergency 

assistance. Therefore, given a second’s worth of time has already been consumed to gather the 

necessary data for this algorithm, the actual classification process should be prompt to enable 
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rapid attention, within seconds an individual could have collapsed and incurred concussive im-

pact, as has been established, can result in a fatal outcome. 

3.2. Random Forest Algorithm  

The random forest algorithm is a form of ensemble learning that utilises several individual 

learners, in this case decision trees. As Safavian discusses in [17] decision tree classifiers (DTC) 

are pervasive in machine learning systems used in a broad range of scenarios from radar signal 

classification to speech recognition. The essence of DTCs is in the algorithm’s ability to classify 

complex signals and data into simple rules, this represents a solution that is often easier to inter-

pret. Decision Trees in of themselves can find success in time series signal data such as seizure 

detection with EEG signals. Random forests can offer advantages over individual learners.   

  
Fig 4. A general Random Forest process  

As Biau et al. discussed in paper [18], a random forest is a general-purpose regression and 

classification algorithm that makes use of several decision trees arranged into an “ensemble.” Fig 

4 shows a simple illustration of a random forest process. This technique involves randomising 

these individual trees and then aggregates their individual predictions into an average score. This 

is a useful technique especially in areas where the variables are great in proportion to observa-

tions. Random forest has been already utilised successfully in studies regarding the analysis of 

seizure data. Therefore, there is already an element of verifiable proof available that this method 

is relatively successful within this context. In this study, 100 individual classifiers were utilised 

for this analysis using the standard framework given within the Scikit learn library with none of 
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the other parameters tuned. Analytics were then carried out using a confusion matrix to under-

stand overall performance. 

3. Results 

This proposed methodology was carried out in code using Python 3.6. Within Python several 

libraries were utilised including SciPy for its transform suite and Scikit Learn for simple practical 

access to common machine learning algorithms. In addition, some pre-processing was achieved 

using pandas and numpy. In this experiment, the splitting and shuffling was carried out using 

Scikit Learn’s K-fold cross-validation with shuffling engaged, and 10-fold splits being carried 

out amongst the data. The benefits of K-fold cross validation being a reduction in bias during 

learning, rendering the learner a superior generaliser. Performance was ascertained in utilisation 

of typical metrics in recall, precision and accuracy. As discussed, the key metric is sensitivity for 

an epileptic seizure classifier. This operation was repeated six times to analyse if the results were 

consistent through multiple iterations of learning. Table 3 shows the performance of the random 

forest and FFT algorithm over 6 random trials of learning and testing.  

 
Table 3 shows the results of training the random forest with the FFT enabled 

Iteration Recall Precision Accuracy 

1 99.78% 98.39% 99.08% 

2 100% 97.97% 98.97% 

3 100% 99.73% 99.36% 

4 99.78% 98.09% 98.91% 

5 99.57% 97.67% 98.61% 

6 99.89% 97.71% 98.79% 

Average 99.84% 98.03% 98.95% 

 

Average time to classify was 12.2 ms on 1 second of EEG data using GPU on Google Collab 

Cloud service. These results suggest that this methodology potentially, could lead to fast classi-

fication of epilepsy signals in a fast and timely manner when implemented on devices with low 

channel numbers. Of particular interest was that false negatives were minimised to the point 

where they were in the single digits achieving almost 100% accuracy in specificity. This means 

that false negatives were effectively decreased whilst training, therefore, the chance hazardous 

events being missed is reduced. This outperformed [9], [10] and [12] in the literature using tech-

niques such as STFT and IMF but did not outperform [11] and [13], this could be because the 

dataset had more information to work with, given that these operations were based on analysing 

a considerable period worth of information simultaneously (23 seconds). Naturally, the extra in-

formation given on such a set-up would allow for alternative conclusions to be developed, pos-

sibly more accurate. These scores were achieved with one second worth of data window and 12.2 

milliseconds worth of classification time, meaning that this can detect seizures fast in the context 

of this dataset. Given that this was done using GPU on the Google Colab Cloud Service, it is 

prudent to say that if this was running on a local device with limited resources this would run 

slower, further experiments could reveal the extent to which this is the case. This is far more 
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practical for an epileptic having a seizure, reducing the time delay for a carer to act in case of an 

emergency.    

4. Conclusion 

In conclusion, using the proposed process the system was relatively successful in diagnosing 

epileptic seizures from the status-quo utilising random forests and FFT algorithm achieving 99% 

average specificity score with a time to classify of 12.2ms on one second of single channel data. 

This shows that fast, accurate seizure detection is possible. In terms of future work, it would be 

compelling to get more diverse data to understand if it is possible to separate epilepsy signals 

from movement and refine algorithms for every use by epileptic individuals. Another avenue 

would be to attempt proactive performance rather than reactive, to identify the seizure from the 

initial aura rather than when the seizure has begun. Attempting to minimize the time needed to 

make an accurate detection would be another experiment worth attempting. 
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