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Abstract. In this paper, we study the probabilistic stability analysis of
a subclass of stochastic hybrid systems, called the Planar Probabilistic
Piecewise Constant Derivative Systems (Planar PPCD), where the con-
tinuous dynamics is deterministic, constant rate and planar, the discrete
switching between the modes is probabilistic and happens at boundary
of the invariant regions, and the continuous states are not reset during
switching. These aptly model piecewise linear behaviors of planar robots.
Our main result is an exact algorithm for deciding absolute and almost
sure stability of Planar PPCD under some mild assumptions on mutual
reachability between the states and the presence of non-zero probabil-
ity self-loops. Our main idea is to reduce the stability problems on pla-
nar PPCD into corresponding problems on Discrete-time Markov Chains
with edge weights.

Keywords: Stability · Probabilistic Piecewise Constant Derivative Sys-
tems · Discrete-time Markov Chain · Convergence.

1 Introduction

Stability of Stochastic Hybrid Systems (SHS) [28] is a desirable property, as it
guarantees eventual convergence of executions to a point of equilibrium, even
in the presence of random errors. In this paper, we investigate the stability of
a certain kind of SHS where the continuous state space is planar and dynamics
has constant rate, where the rates are discrete and chosen probabilistically. More
precisely, we study Probabilistic Piecewise Constant Derivative Systems (PPCD),
that consist of a finite number of discrete states representing different modes of
operation each associated with a constant rate dynamics, and probabilistic mode
switches enabled at certain polyhedral boundaries. Such systems can aptly model
piecewise linear behaviour of planar robots.

Safety analysis of SHS has been extensively studied in the context of both
non-stochastic as well as stochastic hybrid systems [26,17,8,1,18]; stability on the
other hand is relatively less explored, especially, from a computational point of
view. It is well-known that even for non-stochastic hybrid systems decidability
? This work was partially supported by NSF CAREER Grant No. 1552668 and NSF
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(existence of exact algorithms) for safety is achievable only under restrictions on
the dynamics and the dimension [14]. More recently, decidability of stability of
hybrid systems has been explored in the non-stochastic setting [24]. The main
contribution of this paper is the identification of a practically useful subclass of
stochastic hybrid systems for which stability is decidable along with an exact
stability analysis algorithm.

The classical stability analysis techniques build on the notion of Lyapunov
functions that provide a certificate of stability. While the notion of Lyapunov
functions have been extended to the hybrid system setting, computing them is
a challenge. Typically, they require solving certain complex optimization prob-
lems, for instance, to deduce coefficients of polynomial templates, and more
importantly, need the exploration of increasingly complex templates. In this pa-
per, we take an alternate route where we present graph theory based reductions
to show the decidability of stability analysis.

Our broad approach is to reduce a planar PPCD, that is a potentially infi-
nite state probabilistic system, to that of a Finite State Discrete-time Markov
Chain such that the stability of the planar PPCD can be deduced exactly by
algorithmically checking certain properties of the reduced system. We study two
notions of stability, namely, absolute stability and almost sure stability. In the
former, we seek to ensure that every execution converges, while in the latter, we
require that the probability of the set of system executions that converge be 1.
Absolute convergence ignores the probabilities associated with the transitions,
and hence, can be solved using previous results on stability analysis of Piece-
wise Constant Derivative systems [23], where one checks for certain diverging
transitions and cycles. Checking almost sure convergence is much more chal-
lenging. We show that almost sure convergence can be characterized by certain
constraints based on the stationary distribution of the reduced system. For this
result to hold, we need mild conditions on the PPCD that ensure the existence
of this stationary distribution. The proof relies on several insights, including the
properties of planar dynamics, and convergence results on infinite sequences of
random variables.

The rest of the paper is organized as follows. In section 2, we discuss related
works. In section 3, we model motion of a planar robot with faulty angle actuator
using PPCD. In section 4, we define important definitions and notations related
to Markov Chains. In section 5, we develop algorithms for analyzing convergence
of Markov Chains. We analyze stability of general and planar PPCDs in section
6. Finally, we conclude in section 7.

2 Related Work

Stability is a well studied problem in classical control theory, where Lyapunov
function based methods have been extensively developed. They have been ex-
tended to hybrid systems using multiple and common Lyapunov functions [4,9,19,30].
However, constructing Lyapunov functions is computationally challenging, hence,
alternate approximate methods have been explored. For example, in one ap-



Stability of PPCD 3

proach the state space is divided into certain regions and shown that the system
inevitably ends up in a certain region, thus ensuring stability [12,13,20,21]. An-
other approach is based on abstraction, where a simplified model (known as the
abstract model) is created based on the original model and stability analysis on
the simplified model is mapped back to the original one [2,5,25,10,1,8,22,23].

While stability has been extensively studied in non-probabilistic setting, in-
vestigations of stability for probabilistic systems are limited. Sufficient conditions
for stability of Stochastic Hybrid Systems via Lyapunov functions is discussed
in the survey [29]. Almost sure exponential stability [6,7,11,15] and asymptotic
stability in distribution [32,31] for Stochastic Hybrid Systems have also been
studied. Most of these works on probabilistic stability analysis provide approx-
imate mehtods for analysis. We provide a simple class of Stochastic Hybrid
Systems that have practical application in modeling planar robots, and an exact
decidable algorithm for probabilistic stability analysis.

3 Case Study: Planar robot with a faulty actuator
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Fig. 1: Motion of planar robot with faulty heading angle actuator

Consider a robot navigating in a 2D plane at some constant speed v as shown
in Figure 1. The plane is divided into four regionsR1, R2, R3, R4 corresponding to
the four quadrants, and the robot has a unique direction θi (mode of operation)
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in which it moves while in the region Ri, and changes its mode of operation at
the boundary of the regions. Due to faulty actuator, the robot heading angle may
deviate from θi by an amount εi. We model this as probabilistically choosing one
of the ki uniformly distanced angles θ1i , · · · , θ

ki
i in the interval [θi − εi, θi + εi]

with probabilities p1i , · · · , p
ki
i , respectively. The whole system can be modelled

as a planar PPCD with
∑4
i=1 ki modes, where for every i and 1 ≤ j ≤ ki, the

mode qji corresponds to the robot traversing with heading angle θji with speed v
in the region Ri. The mode switching is possible between Ri and Rj if they are
neighbors, that is, they share a common boundary. For instance, we can switch
between quadrants 1 and 2 or 4 and 1 but not 1 and 3. We can move to any
mode corresponding to a neighbor qji with probability pji .

The objective of the navigation is to reach a target point r on the 2D plane
arbitrarily closely. More precisely, we want to check whether the robot reaches
within a δ > 0 ball around r for any arbitrarily small δ. We want to check if all
executions of the robot have this property, i.e., if the planar PPCD is absolutely
stable, as well as if the probability of convergence is 1, i.e., the planar PPCD is
almost surely stable.

4 Preliminaries

In this section, we will discuss important concepts related to Discrete-time
Markov Chain (DTMC), Weighted Discrete-time Markov Chain (WDTMC) and
convergence of WDTMC.

4.1 Discrete-time Markov Chain

Let Dist(S) denote the set of all probability distributions on the set S. Let us
define Discrete-time Markov Chain (DTMC) on the set of states S.

Definition 1 (Discrete-time Markov Chain). The Discrete-time Markov
Chain (DTMC) is defined as the tupleM = (S,P) where

– S is a set of states.
– P : S 7→ Dist(S) is a function from the set of states S to the set of all

probability distributions over S, Dist(S).

We use P(s1, s2) to denote P(s1)(s2) and Pn(s1, s2) to denote the probability of
going from s1 to s2 in n-steps.

A path of a DTMC M is a sequence of states σ = s1, s2, . . . such that for
all i < |σ|, P(si, si+1) > 0, where |σ| is the length of the sequence. A path
of length 2 is called an edge and the set of all edges is denoted as E . The ith
state of the path σ is denoted by σi and the last state of σ is denoted as σend.
σ[i : j] denotes the subsequence σi, σi+1, . . . , σj . We say s2 is reachable from s1
(denoted s1 ; s2) if there is a path σ onM such that σ1 = s1 and σend = s2.
The set of all finite paths of a DTMCM is denoted as Pathsfin(M) and the set
of all infinite paths is denoted as Paths(M).
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The probability of a finite path σ, denoted P(σ), is the product of the proba-
bilities of each of its edges, P(σ) :=

∏
i<|σ| P(σi, σi+1). The probability of σ with

respect to a distribution ρ, denoted Pρ(σ) is the product of P(σ) and the prob-
ability of σ1 under ρ, i.e., Pρ(σ) := ρ(σ1) · P(σ). We can associate a probability
measure Pr to the set of infinite paths Paths(M) of a DTMC M using proba-
bility of the cylinder sets of the finite paths as discussed in [3]. A path property
P is said to be almost surely satisfied if the set of all paths having property P
has probability 1, i.e., Pr{σ | σ has P} = 1.

Next we define some subclasses of DTMC and show that it has some nice
convergence properties.

Definition 2 (Irreducibility). A DTMC M is called irreducible if for any
s1, s2 ∈ S, s1 ; s2 and s2 ; s1.

Definition 3 (Periodicity). A state s ∈ S in a DTMC M is called periodic
if there is a natural number n > 1 such that, for any path σ starting and ending
at s, |σ| is a multiple of n. A DTMCM is called aperiodic if none of its states
is periodic.

We say a probability distribution is stationary for a DTMC M if the next
step distribution remains unchanged.

Definition 4 (Stationary Distribution). A distribution ρ∗ ∈ Dist(S) is
called the stationary distribution of DTMCM if,

ρ∗(s) =
∑
s′∈S

ρ∗(s′)P(s′, s), ∀s ∈ S.

For finite, irreducible DTMC, the stationary distribution is unique. The fol-
lowing theorem guarantees existence of limiting distribution for finite, irreducible
and aperiodic DTMC and associates it with the stationary distribution of the
DTMC (see [27]).

Theorem 1. For a finite, irreducible and aperiodic DTMC limn→∞ Pn(s1, s2)
exists for all s1, s2 ∈ S and limn→∞ Pn(s1, s2) = ρ∗(s2) where ρ∗ ∈ Dist(S) is
the unique stationary distribution ofM.

Note that, Pn(s1, s2) does not depend on s1 as n→∞.

4.2 Weighted Discrete-time Markov Chain

Let us now define Weighted Discrete-time Markov Chain (WDTMC) that extend
DTMC with weighted edges. Basically, a WDTMC can be observed as a Markov
Reward Process where rewards are associated to individual transitions rather
than nodes.

Definition 5 (Weighted DTMC). The weighted DTMC (WDTMC) MW =
(S,P,W) is a tuple such that (S,P) is a DTMC and W : E 7→ R is a weight
function where E is the set of all possible edges ofMW .
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We also define disjoint union of two WDTMC M1
W and M2

W as a WDTMC
M1

W tM2
W whose states and edges are disjoint unions of states and edges of

M1
W and M2

W respectively. With the weight function W defined, it is possible
to associate weights to individual paths ofMW .

Definition 6 (Weight of a path). The weight of a path σ of WDTMCMW ,
denoted W(σ), is defined as,

W(σ) :=
∑
i<|σ|

W(σi, σi+1)

For σ ∈ Paths(MW ), the quantity limn→∞
∑n
i=1 W(σi, σi+1) is denoted by

W(σ[1 : ∞]). It is easy to observe that, W(σ) = W(σ[1 : ∞]). A simple path
is a path without state repetition and a simple cycle is a path where only the
starting and the ending states are same. We use the notation SP(MW ) for the
set of all simple paths and the notation SC(MW ) for the set of all simple cycles
of a WDTMCMW .

4.3 Convergence of Weighted Discrete-time Markov Chain

Let us define the notions of absolute and probabilistic convergence of WDTMC.
A WDTMC is said to be absolutely convergent if the weight of every infinite
path diverges to −∞.

Definition 7 (Absolute Convergence of WDTMC). A WDTMC MW is
said to be absolutely convergent if for all infinite path σ ∈ Paths(MW ), W(σ)
diverges to −∞, i.e.,

W(σ[1 :∞]) = −∞.

Further, a WDTMC is said to be almost surely convergent if the weight of an
infinite path diverges to −∞ with probability 1.

Definition 8 (Almost Sure Convergence of WDTMC). We say that a
WDTMC MW is almost surely convergent if for any path σ of MW , W(σ)
diverges to −∞ with probability 1. In other words,

Pr {σ ∈ Paths(MW ) : W(σ[1 :∞]) = −∞} = 1.

Remark 1. Let us explain the reason behind defining such a strange notion of
convergence. For reasons that will be clarified later, we actually want to check for
an infinite path σ ofMW , if the product of weights of the edges converge to 0,
i.e., limn→∞

∏n
i=1 W(σi, σi+1) = 0, provided 0 <W(σi, σi+1) <∞ for all i ∈ N.

This condition is equivalent to limn→∞
∑n
i=1 log(W(σi, σi+1)) = −∞. Hence for

convenience, we consider log of original weights as weights of individual edges,
and check if sum of weights of edges of an infinite path diverge to −∞.
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4.4 Probabilistic Bisimulation

Probabilistic bisimulation [3] on a WDTMC is an equivalence relation on its
set of states such that probabilities of corresponding edges agree for two related
states.

Definition 9 (Probabilistic Bisimulation). A probabilistic bisimulation on
a WDTMCMW is an equivalence relation ∼ on S such that for any s1, s2 ∈ S
with s1 ∼ s2, P(s1, T ) = P(s2, T ) for each equivalence class T of ∼.
Note that, P(s, T ) =

∑
t∈T P(s, t) for s ∈ S. Let us now use probabilistic bisim-

ulation to relate infinite paths of a WDTMC.

Definition 10 (Bisimulation-Equivalent Paths). Given a probabilistic bisim-
ulation ∼ on a WDTMC MW , two infinite paths π = π1, π2, . . . and π̃ =
π̃1, π̃2, . . . are said to be bisimulation equivalent, denoted π ∼ π̃, if they are
statewise related by ∼, i.e.,

π ∼ π̃ iff πi ∼ π̃i for all i ≥ 1

A set of infinite paths is ∼ bisimulation-closed for some probabilistic bisimulation
∼, if for any path in the set, all its bisimulation-equivalent paths are also in the
set. In other words, Π ⊆ Paths(MW ) is ∼ bisimulation-closed if for any π ∈ Π
and any π̃ ∼ π, π̃ ∈ Π. Let us denote by Prs(Π) the set of all paths in Π
that start from s ∈ S. The following lemma [3] equates the probability of two
sets of paths that start from ∼ related states and are subset of the same ∼
bisimulation-closed set.

Lemma 1. Let ∼ be a probabilistic bisimulation on a WDTMC MW . For all
states s1, s2 ofMW , s1 ∼ s2 implies Prs1(Π) = Prs2(Π), for all ∼ bisimulation-
closed events Π ⊆ Paths(MW ).

4.5 Polyhedral Sets

We denote the set of all polyhedral subsets of Rn by Poly(n). The facets of a
polyhedral subset A are the largest polyhedral subsets of the boundary of A. We
denote the boundary of a polyhedral subset A by ∂(A) and the set of all facets
of A by F(A). We say a polyhedral subset P is positive scaling invariant if for
all x ∈ P and α > 0, αx ∈ P .

5 Analyzing Convergence of Weighted Discrete-time
Markov Chains

In this section, we discuss necessary and sufficient conditions for absolute and
almost sure convergence of WDTMC. For our analysis, we will assume all paths
of the WDTMC start from a single state called the initialization point (denoted
sinit) of the WDTMC. In other words we restrict our attention to the set of
paths Σ′ := {σ ∈ Paths(MW ) | σ1 = sinit}. Consequently, we consider only
those edges E ′ = Σ′ ∩ E , which are reachable from sinit. We abuse notation and
use Σ for Σ′ and E for E ′ for the rest of the section.
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5.1 Analyzing absolute convergence of Weighted DTMC

Here we provide a necessary and sufficient condition for analyzing absolute con-
vergence of a WDTMC. We begin with the following proposition (proved in the
Appendix) which states that for any finite path σ ∈ Pathsfin(MW ), we can get
one simple path and a set of simple cycles such that their total weight equals
the weight of σ.

Proposition 1. For any finite path σ of MW there exist a simple path σs ∈
SP(MW ) and a set of simple cycles SCσ ⊆ SC(MW ) such that W(σ) = W(σs)+∑
C∈SCσ W(C).

We use Proposition 1 to prove the following main theorem which states that,
a WDTMC is absolutely convergent iff there is no edge of infinite weight and no
cycle of weight greater or equal to 0 reachable from the initial point.

Theorem 2. The WDTMCMW is absolutely convergent iff,

1. There does not exist an edge e ∈ E reachable from sinit such that W(e) =∞.
2. For any simple cycle C reachable from sinit, W (C) < 0.

Proof. (⇒) To show that the conditions 1 and 2 are necessary, we have to prove
that if either of them is negated then MW is not absolutely convergent. If
condition 1 is false then there is an edge e = (s1, s2) with W(s1, s2) = ∞
such that for some finite path σ starting from sinit, σ|σ|−1 = s1 and σ|σ| = s2.
But that implies W(σ) =

∑|σ|−1
i=1 W(σi, σi+1) = ∞. So for any infinite path σ′

with prefix σ, W(σ′) =∞. ThusMW is not absolutely convergent. On the other
hand if we suppose condition 2 is false then there is a simple cycle C ∈ SC(MW )
with W(C) ≥ 0 such that for some finite path σ starting from sinit, there exists
an index j such that C = σ[j : |σ|]. Now we can easily construct the following
infinite path σ∞ = σ ·C ·C . . . by concatenating C infinite times to σ. Clearly, σ∞
starts at sinit since σ starts at sinit and W(σ∞) = W(σ) +

∑
n∈N W(C) ≥W(σ).

Since for any finite path σ, W(σ) is also finite, W(σ∞) is bounded below by
some finite quantity and cannot diverge to −∞. Thus, MW is not absolutely
convergent.

(⇐) Conversely, suppose both conditions 1 and 2 hold. Now, let σ be an
arbitrary infinite path starting from sinit and σ[1 : i] be its finite prefix of length
i ∈ N. By Proposition 1, there exist a simple path σ[1 : i]s and a set of simple
cycles SCσ[1:i] such that W(σ[1 : i]) = W(σ[1 : i]s) +

∑
C∈SCσ[1:i] W(C). Now, for

any i ∈ N, W(σ[1 : i]s) is at most
∑

(s1,s2)∈E max{W(s1, s2) | (s1, s2) ∈ E} <∞.
Also, SCσ[1:i] is a set of simple cycles where each cycle has weight at most
maxC∈SC(MW ) W(C) < 0 (here we abuse notation and denote the set of all simple
cycles reachable from sinit as SC(MW )). Thus, for all K ∈ R, there exists i ∈ N
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such that ∑
(s1,s2)∈E

max{W(s1, s2) | (s1, s2) ∈ E}+
∑

C∈SCσ[1:i]

W(C) < K

⇒W(σ[1 : i]s) +
∑

C∈SCσ[1:i]

W(C) < K

⇒W(σ[1 : i]) < K.

But this implies W(σ) = limi→∞W(σ[1 : i]) = −∞ for any infinite path σ
starting from sinit, i.e.,MW is absolutely convergent. ut

5.2 Analyzing almost sure convergence of Weighted DTMC

In this subsection, we will provide a necessary and sufficient condition for almost
sure convergence of a WDTMC. We assume a WDTMCMW is finite, irreducible
and aperiodic and thus has the limiting distribution equal to its stationary dis-
tribution ρ∗ (Theorem 1).

Given a WDTMC MW , we begin by defining random variables {Xe
j | e ∈

E ; j ∈ N} on the set of infinite paths Paths(MW ), that captures the information
of whether an edge e ∈ E appears on the jth step of an infinite path σ. More
precisely,

Xe
j (σ) =

{
1 if (σj , σj+1) = e

0 else.

Note that for some e ∈ E and σ ∈ Paths(MW ),
∑n
j=1X

e
j (σ) gives the number of

times e appears on σ[1 : n+1]. Now, the following lemma (proved in Appendix)
gives that, for any edge e ∈ E , the average of {Xe

j | j ∈ N} almost surely
converges to Pρ∗(e), which is the probability of e with respect to the stationary
distribution ρ∗.

Lemma 2. For any edge e ∈ E of a WDTMCMW ,

Pr

{
σ ∈ Paths(MW ) : lim

n→∞

∑n
j=1X

e
j (σ)

n
= Pρ∗(e)

}
= 1.

Next, we define partial average weight upto n for an infinite path σ as

(Sσ)n
n

:=

∑n
i=1 W(σi, σi+1)

n
,

and note that,

(Sσ)n
n

=

∑
e∈E(# times e appears on σ[1 : n+ 1]) ·W(e)

n

=

∑
e∈E

(∑n
j=1X

e
j (σ)

)
·W(e)

n
(1)
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We now state the main lemma of this subsection which essentially states that,
the average weight of an infinite path almost surely converges to a quantity that
depends only on the weights and probabilities of the edges.

Lemma 3. For a WDTMCMW ,

Pr

{
σ ∈ Paths(MW ) : lim

n→∞

(Sσ)n
n

=
∑
e∈E

Pρ∗(e)W(e)

}
= 1.

Proof. We have already established that,

(Sσ)n
n

=

∑
e∈E

(∑n
j=1X

e
j (σ)

)
·W(e)

n
[Equation 1]

Thus, lim
n→∞

(Sσ)n
n

= lim
n→∞

∑
e∈E

(∑n
j=1X

e
j (σ)

)
·W(e)

n

⇒ lim
n→∞

(Sσ)n
n

=
∑
e∈E

Pρ∗(e) ·W(e) almost surely [by Lemma 2]

ut

We say
∑
e∈E Pρ∗(e)W(e) is the effective weight of the WDTMCMW and denote

it as WE . The main theorem basically states that a WDTMC is almost surely
convergent iff its effective weight is strictly less than 0.

Theorem 3. A WDTMC MW is almost surely convergent iff WE < 0, where
WE =

∑
e∈E Pρ∗(e)W(e) is the effective weight ofMW .

Proof. Observe that, weight of an infinite path σ, W(σ), can be written as
limn→∞ n · ((Sσ)n/n), where ((Sσ)n/n) is the partial average weight upto n
for the infinite path σ. Since,

lim
n→∞

(
(Sσ)n
n

)
=
∑
e∈E

Pρ∗(e)W(e) almost surely [by Lemma 3]

⇒W(σ) = lim
n→∞

n ·
(
(Sσ)n
n

)
= lim
n→∞

n ·

(∑
e∈E

Pρ∗(e)W(e)

)
almost surely

Thus, W(σ) diverges to −∞ almost surely if and only if
∑
e∈E Pρ∗(e)W(e) < 0.

In other words,MW is almost surely convergent iff WE < 0. ut

5.3 Computability

Based on Theorems 2 and 3 we present two algorithms here for checking absolute
and almost sure convergence of a WDTMC. For the first algorithm, assuming
the WDTMC is finite, we first check for existence of an infinite weight edge by
Breadth First Search (BFS) [16] and then for a cycle with non-negative weight
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using a variant of the Bellman-Ford algorithm [16]. If neither of them is found
then the WDTMC is deemed absolutely convergent by Theorem 2. Since BFS
takes time linear to the size of its input and Bellman-Ford takes time quadratic
to the size of its input, the time complexity of this algorithm is O(|S|2), where
S is the set of states ofMW .

For the second algorithm, assuming the WDTMC is finite, irreducible and
aperiodic, existence of an infinite weight edge is checked by Breadth First Search
(BFS). If such an edge exists then the WDTMC is deemed not almost surely
convergent (by Theorem 3). Otherwise, the stationary distribution ρ∗ of the
WDTMC is calculated by solving a set of linear equations mentioned in Defi-
nition 4. The value

∑
e∈E Pρ∗(e)W(e) is then calculated (where E is the set of

transitions of the WDTMC) and compared to 0. The WDTMC is deemed almost
surely convergent only if

∑
e∈E Pρ∗(e)W(e) < 0. Since BFS takes time linear to

its input size and solving a set of linear equations takes time at most cubic in
the number of variables, the time complexity of this algorithm is O(|S|3), where
S is the set of states ofMW .

6 Probabilistic Piecewise Constant Derivative Systems

In this section, we present the details of the Probabilistic Piecewise Constant
Derivative Systems (PPCD) and provide a characterization of absolute and al-
most sure stability by a reduction to that of DTMCs.

6.1 Formal Definition of PPCD

We model PPCDs as consisting of a discrete set of modes, each associated with
an invariant and probabilistic transitions between modes that are enabled at the
boundaries of the invariants.

Definition 11 (PPCD). The Probabilistic Piecewise Constant Derivative Sys-
tem (PPCD) is defined as the tuple H := (Q,X , Inv,Flow,Edges) where

– Q is the set of discrete locations,
– X = Rn is the continuous state space for some n ∈ N,
– Inv : Q→ Poly(n) is the invariant function which assigns a positive scaling

invariant polyhedral subset of the state space to each location q ∈ Q,
– Flow : Q→ X is the Flow function which assigns a flow vector, say Flow(q) ∈
X , to each location q ∈ Q,

– Edges ⊆ Q × (∪q∈QF(Inv(q))) × Dist(Q) is the probabilistic edge relation
such that (q, f, ρ) ∈ Edges where for every (q, f), there is a at most one ρ
such that (q, f, ρ) ∈ Edges and f ∈ F(Inv(q)). f is called a Guard of the
location q.

Next, we discuss the semantics of the PPCD. An execution starts from a
location q0 ∈ Q and some continuous state x0 ∈ X and evolves continuously for
some time T according to the dynamics of q0 until it reaches a facet f0 of the
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invariant of q0. Then a probabilistic discrete transition is taken if there is an edge
(q0, f0, ρ0) and the state q0 is probabilistically changed to q1 with probability
ρ0(q1). The execution (tree) continues with alternating continuous and discrete
transitions.

Formally, for any two continuous states x1, x2 ∈ X and q ∈ Q, we say that
there is a continuous transition from x1 to x2 with respect to q if x1, x2 ∈ Inv(q),
there exists T ≥ 0 such that x2 = x1+Flow(q)·T , x1+Flow(q)·t 6∈ ∂(Inv(q0)) for
any 0 ≤ t < T and x2 ∈ ∂(Inv(q0)). We note that there is a unique continuous
transition from any state (q, x) since it requires the state to evolve until it reaches
the boundary for the first time, which corresponds to a unique time of evolution
T . Further, if for all t ≥ 0, x1+Flow(q) · t ∈ Inv(q) then we say x1 has an infinite
edge with respect to q. For two locations q1, q2 ∈ Q, we say there is a discrete
transition from q1 to q2 with probability p via ρ ∈ Dist(Q) and f ∈ F(q1) if
f ⊆ Inv(q2), (q1, f, ρ) ∈ Edges and p = ρ(q2).

We capture the semantics of a PPCD using a WDTMC, wherein we combine
a continuous transition and a discrete transition to represent a probabilistic
transition of the DTMC. In addition, to reason about convergence, we also need
to capture the relative distance of the states from the equilibrium point, which
is captured using edge weights. Let us fix 0 as the equilibrium point for the rest
of the section. The weight on a transition from (q1, x1) to (q2, x2) captures the
logarithm of the relative distance of x1 and x2 from 0, that is, it is (||x2||/||x1||),
where ||x|| captures the distance of state x from 0.

Definition 12 (Semantics of PPCD). Given a PPCD H, we can construct
the WDTMCMH := (SH,PH,WH) where,

– SH = Q×X
– PH and WH are defined as follows for any (q1, x1) and (q2, x2):
• If there is a continuous transition from x1 to x2 with respect to q1 and
there is a discrete transition from q1 to q2 with probability p via some
ρ ∈ Dist(Q) and f ∈ F(q1), and x2 ∈ f , then PH((q1, x1), (q2, x2)) = p
and WH((q1, x1), (q2, x2)) = log (||x2||/||x1||)

• If x1 has an infinite edge with respect to q1, then PH((q1, x1), (q2, x2)) =
1 if (q1, x1) = (q2, x2) and 0, otherwise, and WH((q1, x1), (q1, x1)) =∞.

• Otherwise, PH((q1, x1), (q2, x2)) = WH((q1, x1), (q2, x2)) = 0.

Since all executions of the PPCD H start from location q0 and state x0, we
consider only those paths of the semantics MH which start from (q0, x0) and
denote them as Paths(MH). We say a path σ = (q0, x0), (q1, x1), . . . converges
to 0 if norm of the corresponding state sequence ||x0||, ||x1||, . . . converges to 0.
Stability of a PPCDH is defined in terms of convergence of paths of its semantics
MH as follows,

Definition 13 (Stability of PPCD). A PPCD H is called absolutely stable if
every path of MH converges to 0. Analogously, H is called almost surely stable
if any path ofMH converges to 0 with probability 1, i.e.,

Pr {σ ∈ Paths(MH) : σ converges to 0} = 1.
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We now characterize stability of a PPCD H in terms of its semantics MH.
Basically we state that, H is absolutely (almost surely) stable iff MH is abso-
lutely (almost surely) convergent.

Theorem 4 (Characterization of Stability). A PPCD H is absolutely stable
iff its semantics MH is absolutely convergent and it is almost surely stable iff
MH is almost surely convergent.

Proof. Note that, a path σ ofMH converges to 0 iff W(σ) diverges to −∞. To
observe this, let σ = (q0, x0), (q1, x1), . . . . Then, ||x0||, ||x1||, . . . converge to 0 iff,

lim
n→∞

||xn||
||x0||

= 0 [since ||x0|| 6= 0]

⇐⇒ lim
n→∞

||x1||
||x0||

· ||x2||
||x1||

· · · ||xn||
||xn−1||

= 0

[since ||xi|| 6= 0 for all i = 1, . . . , n− 1 if σ is infinite]

⇐⇒ lim
n→∞

log

(
||x1||
||x0||

· ||x2||
||x1||

· · · ||xn||
||xn−1||

)
= −∞

⇐⇒ lim
n→∞

log

(
||x1||
||x0||

)
+ log

(
||x2||
||x1||

)
+ · · · log

(
||xn||
||xn−1||

)
= −∞

⇐⇒ lim
n→∞

W(σ[1 : n]) = −∞

Thus, every infinite path ofMH converges to 0 iff weight of every infinite path
diverges to −∞ and the set of infinite paths ofMH converging to 0 has probabil-
ity 1 iff the set of infinite paths having weight diverging to −∞ has probability
1. In other words, H is absolutely (almost surely) stable iff MH is absolutely
(almost surely) convergent. ut

6.2 Stability of Planar PPCD

In general, semantics of a PPCD has infinite number of states and thus the
algorithms developed in section 5.3 cannot be applied to decide absolute (almost
sure) convergence of the semantics. However, if the continuous state space of a
PPCD H is R2, then we can reduceMH to a finite WDTMC that provides an
exact characterization ofMH. A PPCD with X = R2 is called a planar PPCD.
Since for each location q, Inv(q) is positively scaled, the facets of Inv(q) are rays
emanating from origin. Given constant flow for each location q, a continuous
transition starting at a point of some facet f1 ∈ ∪q∈QF(Inv(q)) ends up at a
unique point of a unique facet f2 ∈ ∪q∈QF(Inv(q)). This property is not observed
if the continuous state space is of three or higher dimensions (Figure 2). Also, if
two continuous transitions start from different points x1, x′1 of the same facet f1,
they end up in unique points x2, x′2 (respectively) of a unique facet f2 such that
||x2||/||x1|| = ||x′2||/||x′1||. This gives us the following lemma (proved in Appendix),

Lemma 4. Let e = ((q1, x1), (q2, x2)), e′ = ((q1, x
′
1), (q2, x

′
2)) be two edges of

MH (where H is a planar PPCD) such that, PH(e),PH(e′) > 0, and x1, x′1 ∈ f1
where f1 ∈

⋃
q∈Q F(Inv(q)). Then PH(e) = PH(e′) and WH(e) = WH(e′).
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x
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x′ 2
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O

Fig. 2: (a) In R2, continuous transition with constant rate starting from any
point in a facet leads to a unique point in a unique facet. (b) In R3, even with
constant rate, continuous transitions starting from different points in the same
facet may end up in different facets.

For the rest of the section, we will assume all paths of the semantics MH
of a planar PPCD H start at (q0, x0) and x0 ∈ f0, where f0 is a facet in
∪q∈QF(Inv(q)).

We now define the quotient of a planar PPCD H, which is a finite WDTMC
having the same convergence properties as MH. Here we consider the set of
states as Q × ∪q∈QF(Inv(q)) instead of Q × X and use Lemma 4 to define the
probabilistic edges and their weights.

Definition 14 (Quotient of PPCD). Let H be a planar PPCD and MH be
its semantics. We define the WDTMC Hred = (Sred,Pred,Wred) as follows,

– Sred = Q×
⋃
q∈Q F(Inv(q))

– Pred((q1, f1), (q2, f2)) = PH((q1, x1), (q2, x2)) for some x1 ∈ f1 and x2 ∈ f2
such that PH((q1, x1), (q2, x2)) > 0, and 0 otherwise.

– Wred((q1, f1), (q2, f2)) = WH((q1, x1), (q2, x2)) for some x1 ∈ f1 and x2 ∈ f2
such that PH((q1, x1), (q2, x2)) > 0, and 0 otherwise.

The above definition is well-defined, that is, the choice of x1 and x2 do not
matter due to Lemma 4.

We will eventually prove that a planar PPCD H is absolutely (almost surely)
stable if and only if its quotient WDTMC Hred is absolutely (almost surely)
convergent. First, let us show that for every infinite path σ of MH, there is a
path π in Hred with same weight and vice versa.
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Lemma 5 (Conservation of weight). For every infinite path σ ofMH, there
is a path π in Hred such that W(σ) = W(π) and vice versa.

Proof. (⇒) Let σ = σ1, σ2, . . . be an infinite path ofMH. By assumption, σi ∈ fi
where fi ∈

⋃
q∈Q F(q) is a facet, for each i ∈ N. Suppose for each i, σi = (qi, xi).

Since for each i, there is an edge between (qi, xi) and (qi+1, xi+1) inMH, there
should be an edge between (qi, fi) and (qi+1, fi+1) in Hred. Using Lemma 4 we
can conclude that for all i, W((qi, xi), (qi+1, xi+1)) = W((qi, fi), (qi+1, fi+1)).
Thus we can construct the infinite path π = ((q1, f1), (q2, f2), . . . ) such that
W(π) = W(σ).

(⇐) To prove the converse, we show by induction that for any n ∈ N if there
is a path π of length n in Hred then there is a path σ of length n in MH with
same weight as π.
Base case: Suppose ((q1, f1), (q2, f2)) is an edge of Hred. Then there exist x1 ∈
f1 and x2 ∈ f2 such that x2 = x1+Flow(q1)·t, for some t ≥ 0, i.e., there is an edge
between (q1, x1) and (q2, x2) in MH. Also by Lemma 4, W((q1, x1), (q2, x2)) =
W((q1, f1), (q2, f2)). Hence base case is proved.

Now suppose ((q1, f1), . . . , (qn, fn), (qn+1, fn+1)) is a path of Hred and by
induction hypothesis we have a path ((q1, x1), . . . , (qn, xn)) in MH such that
W((q1, f1), . . . , (qn, fn)) = W((q1, x1), . . . , (qn, xn)). Since there is an edge be-
tween (qn, fn) and (qn+1, fn+1), there exist x′n ∈ fn and x′n+1 ∈ fn+1 such that

x′n+1 = x′n + Flow(qn) · t (2)

for some t ≥ 0. Since X = R2, fn and fn+1 are rays. By Equation 2, there is a
straight line of slope Flow(qn) that intersects both of them. But then any straight
line with slope Flow(qn) intersecting fn will also intersect fn+1, in fact, if we take
the straight line with slope Flow(qn) passing through xn, it will intersect fn+1.
That means there exists t ≥ 0 and xn+1 ∈ fn+1 such that xn+1 = xn+Flow(qn)·t.
This is because for t to be negative, fn and fn+1 must intersect and xn and x′n
must lie on opposite sides of this intersection point on fn. But this is impossible
since fn and fn+1 intersect only at 0 and both of them get terminated at 0. Thus
there exist xn+1 ∈ fn+1 such that ((qn, xn), (qn+1, xn+1)) is an edge of MH.
By Lemma 4, W((qn, xn), (qn+1, xn+1)) = W((qn, fn), (qn+1, fn+1)). Hence our
claim is proved for all n ∈ N, i.e., it holds for infinite paths of Hred as well. ut

Using Lemma 5, we now prove the main theorem which states that a PPCD is
absolutely (almost surely) stable if and only if its quotient WDTMC is absolutely
(almost surely) stable.

Theorem 5. A planar PPCD H is absolutely (almost surely) stable iff its quo-
tient WDTMC Hred is absolutely (almost surely) convergent.

Proof. A PPCDH is absolutely stable iffMH is absolutely convergent (Theorem
4). By Lemma 5, it is easy to observe that every infinite path of MH diverge
to −∞ if and only if every infinite path of Hred diverge to −∞. Thus, we can
conclude that H is absolutely stable if and only if Hred is absolutely stable.
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On the other hand, a PPCD H is almost surely stable iffMH is almost surely
convergent (Theorem 4). Let us show that MH is almost surely convergent iff
Hred is almost surely convergent. Since we have assumed that all paths ofMH
start from (q0, x0), all paths of Hred will start from (q0, f0), where f0 is the facet
containing x0. Let us define the equivalence relation ∼ on the set of states of the
WDTMCMH tHred as,

(qi, xi) ∼ (qj , xj) if qi = qj and xi, xj belong to the same facet
(qi, xi) ∼ (qj , fj) if qi = qj and xi ∈ fj
(qi, fi) ∼ (qj , fj) if qi = qj and fi = fj ,

where qi, qj ∈ Q, xi, xj ∈ X and fi, fj ∈ ∪q∈QF(Inv(q)). Note that, the set
of equivalence classes of ∼ is given by {(q, f) | q ∈ Q, f ∈ F(Inv(q))}. Now
by Lemma 4, we can easily deduce that ∼ is a probabilistic bisimulation on
MH tHred. Observe that, the set

Π = {π ∈ Paths(MH tHred) : W(π[1 :∞]) = −∞}

is ∼ bisimulation-closed. To see this, take any π ∈ Π and π̃ ∼ π. By Lemma
4, W(πi, πi+1) = W(π̃i, π̃i+1) for all i. Thus, W(π̃[1 : ∞]) = −∞ as well, i.e.,
π̃ ∈ Π. Now, we have Pr(q0,x0)(Π) = Pr(q0,f0)(Π) as a direct consequence of
Lemma 1, i.e.,

Pr{σ ∈ Paths(MH) | σ1 = (q0, x0) and W(σ) diverges to −∞}
=Pr{π ∈ Paths(Hred) | π1 = (q0, f0) and W(π) diverges to −∞}.

Hence, Pr{σ ∈ Paths(MH) | σ1 = (q0, x0) and W(σ) diverges to −∞} = 1 if
and only if Pr{π ∈ Paths(Hred) | π1 = (q0, f0) and W(π) diverges to −∞} = 1,
i.e.,MH is almost surely convergent iff Hred is almost surely convergent. Thus,
H is almost surely stable iff Hred is almost surely convergent. ut

Since Hred is finite, we can use the algorithms developed in section 5.3 to
decide its absolute (almost sure) convergence. This in turn decides absolute
(almost sure) stability of H by Theorem 5.

7 Conclusion

In this paper, we showed the decidability of absolute and almost sure convergence
of Planar Probabilistic Piecewise Constant Derivative Systems (PPCD), that are
a practically useful subclass of stochastic hybrid systems and can model motion
of planar robots with faulty actuators. We give a computable characterization
of absolute and almost sure convergence through a reduction to a finite state
DTMC. In the future, we plan to extend these ideas to analyze higher dimensions
PPCD and SHS with more complex dynamics. In particular, the idea of reduction
can be applied to higher dimensional PPCD but we will need to extend our
analysis to a Markov Decision Process that will appear as the reduced system.
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Appendix

Proof of Proposition 1

Here we provide a detailed proof of Proposition 1 which states that,
For any finite path σ ofMW there exist a simple path σs ∈ SP(MW ) and a set
of simple cycles SCσ ⊆ SC(MW ) such that W(σ) = W(σs) +

∑
C∈SCσ W(C).

Proof. We traverse σ and whenever a cycle C is encountered, remove its edges
from σ and add the cycle to the set SCσ. This process is repeated until SCσ
contains only simple cycles and the remaining edges of σ form a simple path
σs = σ − (∪{C | C ∈ SCσ}). Let Eσs denote the set of edges of σs and for each
C ∈ SCσ, EC denote the set of edges of C. Clearly, {Eσs} ∪ {EC | C ∈ SCσ} is a
partition of the set of edges of σ. Thus W(σ) = W(σs) +

∑
C∈SCσ W(C). Hence,

our claim is proved. ut

Algorithms from Section 5.3

Based on the discussions of section 5.3, we provide pseudocodes for algorithms
for checking absolute (almost sure) convergence of a finite (finite, irreducible and
aperiodic) WDTMC.

Algorithm 1 Checking absolute convergence of WDTMC
Input: A WDTMCMW := (S,P,W)
Output: Yes/No
1: ConvertMW to a weighted graph G = (V,E,W ′) where,
V = S, E = {(s1, s2) ∈ S × S | P(s1, s2) > 0},
and W ′ : E → R defined as W ′(e) := −W(e)

2: Run BFS on G to check existence of edge with weight −∞
3: if (edge with −∞ weight exists) then
4: Return No
5: end if
6: Run Bellman-Ford algorithm on G
7: if (cycle with negative weight is found) then
8: Return No
9: else
10: Let d : V → R≥0 define the shortest distance of each v ∈ V from sinit

11: Mark in E all edges (u, v) such that d(v) = d(u) +W ′(u, v)
12: Delete from G all unmarked edges
13: Run DFS on G (with unmarked edges deleted) to check for a cycle
14: if (a cycle is found) then
15: Return No
16: else
17: Return Yes
18: end if
19: end if
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Algorithm 2 Checking almost sure convergence of WDTMC
Input: A WDTMCMW := (S,P,W)
Output: Yes/No
1: ConvertMW to a weighted graph G = (V,E,W ′) where,
V = S, E = {(s1, s2) ∈ S × S | P(s1, s2) > 0},
and W ′ : E → R defined as W ′(e) := W(e)

2: Run BFS on G to check existence of edge with weight ∞
3: if (edge with ∞ weight exists) then
4: Return No
5: end if
6: Calculate stationary distribution ρ∗ ofMW by solving the set of linear equations,

ρ∗(s) =
∑
s′∈S

ρ∗(s′)P(s′, s), ∀s ∈ S

∑
s∈S

ρ∗(s) = 1

7: asWeight← 0
8: for e ∈ E do
9: asWeight = asWeight+ Pρ∗(e)W

′(e)
10: end for
11: if asWeight < 0 then
12: Return Yes
13: else
14: Return No
15: end if

Proof of Lemma 2

We prove Lemma 2 here which essentially states that,
For any edge e ∈ E of a WDTMCMW ,

Pr

{
σ ∈ Paths(MW ) : lim

n→∞

∑n
j=1X

e
j

n
= Pρ∗(e)

}
= 1,

Proof. Construct the DTMCM′ = (S′,P′) fromMW , where S′ = S∪E and for
each e = (s, s′) ∈ E , (s, e), (e, s′) ∈ E ′ with P′(s, e) = P(s, s′) and P′(e, s′) = 1 (E ′
is the set of edges ofM′). Note that, there is a one to one correspondence between
Paths(MW ) and Paths(M′), where each edge e = (s, s′) in σ ∈ Paths(MW ) is
replaced by consecutive edges (s, e) and (e, s′) in the corresponding path σ′ ∈
Paths(M′). Thus, (σj , σj+1) = e if and only if σ′(2j) = e, where σ′ is the
corresponding path of σ. Now, let us define random variables {Y xj | x ∈ S′; j ∈
N} as,

Y xj =

{
1 if σ′j = x

0 else

for σ′ ∈ Paths(M′). Then, it is easy to observe that,
∑n
j=1X

e
j =

∑2n
j=1 Y

e
2j . Note

that,M′ is finite and irreducible. Hence, by strong law of large numbers for any
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x ∈ S′ [27],

lim
n→∞

∑2n
j=1 Y

x
j

2n
= ρ∗′(x) almost surely,

where ρ∗′ is the stationary distribution ofM′. Since for any x ∈ S′,

lim
n→∞

∑2n
j=1 Y

x
2j

2n
= lim
n→∞

∑2n
j=1 Y

x
j

2n

Thus, lim
n→∞

∑n
j=1X

e
j

n
= 2

(
lim
n→∞

∑2n
j=1 Y

e
2j

2n

)
= 2ρ∗′(e) almost surely. (3)

Consider ρ : S′ → [0, 1] as

ρ(x) =

{
ρ∗(x)

2 if x ∈ S
P(x)ρ∗(s)

2 if x = (s, s′) ∈ E .

where ρ∗ is the stationary distribution ofMW . Let us observe that,
∑
x∈S′ ρ(x) =∑

s∈S ρ
∗(s)/2 +

∑
s∈S

∑
(s,s′)∈E ρ

∗(s)P(s, s′)/2 = 1, i.e., ρ is a probability dis-
tribution.

Note that, for any x ∈ S,∑
x′∈S′

ρ(x′)P′(x′, x) =
∑
{ρ(e)P′(e, x) : e = (s′, x) ∈ E}

=
∑{

P(e)ρ∗(x)
2

: e = (s′, x) ∈ E
}

=
ρ∗(x)

2
= ρ(x).

And for any x = (s, s′) ∈ E ,

∑
x′∈S′

ρ(x′)P′(x′, x) = ρ(s)P′(s, x) =
ρ∗(s)

2
· P(x) = ρ(x).

Thus, for all x ∈ S′, ρ(x) =
∑
x′∈S′ ρ(x

′)P′(x′, x), i.e., ρ is a stationary dis-
tribution for M′. Since M′ is finite and irreducible, it has a unique stationary
distribution. Thus, ρ = ρ∗′, which ultimately provides for any e = (s, s′) ∈ E ,

lim
n→∞

∑n
j=1X

e
j

n
= 2

(
P(e)ρ∗(s)

2

)
almost surely [by Equation 3]

= ρ∗(s)P(e) almost surely
= Pρ∗(e) almost surely,

This proves Lemma 2. ut
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Proof of Lemma 4

We prove Lemma 4 here which states the following,
Let e = ((q1, x1), (q2, x2)), e′ = ((q1, x

′
1), (q2, x

′
2)) be two edges of MH (where

H is a planar PPCD) such that, PH(e),PH(e′) > 0, and x1, x
′
1 ∈ f1 where

f1 ∈
⋃
q∈Q F(Inv(q)). Then PH(e) = PH(e′) and WH(e) = WH(e′).

Proof. Since continuous state space of H is R2, there is a unique facet f2 for
f1 such that x2, x′2 ∈ f2 (assuming WH(e),WH(e′) 6= ∞). Now, since PH(e)
and PH(e′) depend only on q1 and f2, PH(e) = PH(e′). Since any facet is a ray
emanating from the origin, it can be depicted by the formula y = kx, where
k ∈ R. Let x1 = (x1[1], x1[2]) and x2 = (x2[1], x2[2]). By property of PPCD,
x2 = x1 + Flow(q1) · T for some T ≥ 0. Thus,

(x2[1], x2[2]) = (x1[1], x1[2]) + (Flow(q1)[1]),Flow(q1)[2])T (4)

Let f1 : y = k1x and f2 : y = k2x. So,

x2[2] = k2 · x2[1] (5)
x1[2] = k1 · x1[1] (6)

Using equations 4,5,6 we can write x2[1] = c · x1[1] where c depends on k1,
k2, Flow(q1)[1] and Flow(q1)[2]. Thus

||x2||
||x1|| can also be written in terms of k1,

k2, Flow(q1)[1] and Flow(q1)[2] since ||x2||
||x1|| is equal to either |x2[2]|/|x1[2]| or

|x2[2]|/|x1[1]| or |x2[1]|/|x1[2]| or |x2[1]|/|x1[1]| and x1 and x2 dependent terms
on numerator and denomenator always cancel off each other. Same is true for
e′ as well. Thus, WH(e),WH(e′) depend only on q, f1 and f2 and not on the
points x1, x′1, x2, x′2. Hence, they must be equal. ut
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