Skip to main content

Segmentation of Whole-Brain Tractography: A Deep Learning Algorithm Based on 3D Raw Curve Points

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Segmentation of whole-brain fiber tractography into anatomically meaningful fiber bundles is an important step for visualizing and quantitatively assessing white matter tracts. The fiber streamlines in whole-brain fiber tractography are 3D curves, and they are densely and complexly connected throughout the brain. Due to the huge volume of curves, varied connection complexity, and imaging technology limitations, whole-brain tractography segmentation is still a difficult task. In this study, a novel deep learning architecture has been proposed for segmenting whole-brain tractography into 10 major white matter bundles and the “other fibers” category. The proposed PointNet based CNN architecture takes the whole-brain fiber curves in the form of 3D raw curve points and successfully segments them using a manually created large-scale training dataset. To improve segmentation performance, the approach employs two channel-spatial attention modules. The proposed method was tested on healthy adults across the lifespan with imaging data from the ADNI project database. In terms of experimental evidence, the proposed deep learning architecture demonstrated solid performance that is better than the state-of-the-art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Catani, M., De Schotten, M.T.J.C.: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44, 1105–1132 (2008)

    Google Scholar 

  2. Wakana, S., et al.: Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36, 630–644 (2007)

    Google Scholar 

  3. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., et al.: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39, 336–347 (2008)

    Article  Google Scholar 

  4. Wassermann, D., et al.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct. Funct. 221(9), 4705–4721 (2016). https://doi.org/10.1007/s00429-015-1179-4

    Article  Google Scholar 

  5. Zhang, S., Correia, S., Laidlaw, D.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber clustering method. IEEE Trans. Vis. Comput. Graph. 14, 1044 (2008)

    Article  Google Scholar 

  6. Ratnarajah, N., Simmons, A., Hojjatoleslami, A.: Probabilistic clustering and shape modelling of white matter fibre bundles using regression mixtures. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 25–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_4

    Chapter  Google Scholar 

  7. Ye, C., Yang, Z., Ying, S.H., Prince, J.L.J.N.: Segmentation of the cerebellar peduncles using a random forest classifier and a multi-object geometric deformable model: application to spinocerebellar ataxia type 6. Neuroinformatics 13, 367–381 (2015)

    Google Scholar 

  8. Ratnarajah, N., Qiu, A.J.N.: Multi-label segmentation of white matter structures: application to neonatal brains. NeuroImage 102, 913–922 (2014)

    Google Scholar 

  9. Wasserthal, J., Neher, P., Maier-Hein, K.H.J.N.: TractSeg-fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 (2018)

    Google Scholar 

  10. Reisert, M., Coenen, V.A., Kaller, C., Egger, K., Skibbe, H.J.: HAMLET: hierarchical harmonic filters for learning tracts from diffusion MRI. arXiv preprint arXiv:01068 (2018)

  11. Li, B., et al.: Neuro4Neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. NeuroImage 218, 116993 (2020)

    Google Scholar 

  12. Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.J.M.I.A.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)

    Google Scholar 

  13. Liu, F., et al.: DeepBundle: fiber bundle parcellation with graph convolution neural networks. In: International Workshop on Graph Learning in Medical Imaging, pp. 88–95 (2019)

    Google Scholar 

  14. Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F., Thompson, P.M.: Fibernet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 708–711 (2018)

    Google Scholar 

  15. Gupta, V., Thomopoulos, S.I., Rashid, F.M., Thompson, P.M.: FiberNET: an ensemble deep learning framework for clustering white matter fibers. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 548–555 (2017)

    Google Scholar 

  16. “ADNI”: Usc.edu. http://adni.loni.usc.edu/. Accessed 27 Jan 2021

  17. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., JohansenBerg, H., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1), S208-19 (2004)

    Article  Google Scholar 

  18. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)

    Article  Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.,: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  20. Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  21. Gupta, T., Patil, S.M., Tailor, M., Thapar, D., Nigam, A.J.: BrainSegNet: a segmentation network for human brain fiber tractography data into anatomically meaningful clusters. arXiv preprint arXiv:05158 (2017)

  22. Patel, V., Parmar, A., Bhavsar, A., Nigam, A.: Automated brain tractography segmentation using curvature points. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1–6 (2016)

    Google Scholar 

  23. Patil, S.M., Nigam, A., Bhavsar, A., Chattopadhyay, C.J.,: Siamese LSTM based fiber structural similarity network (FS2Net) for rotation invariant brain tractography segmentation. arXiv preprint arXiv:09792 (2017)

  24. Lu, Q., Li, Y., Ye, C.J.M.I.A.: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Med. Image Anal. 72, 102094 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagulan Ratnarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumaralingam, L., Thanikasalam, K., Sotheeswaran, S., Mahadevan, J., Ratnarajah, N. (2022). Segmentation of Whole-Brain Tractography: A Deep Learning Algorithm Based on 3D Raw Curve Points. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics