Skip to main content

Nonlinear Conditional Time-Varying Granger Causality of Task fMRI via Deep Stacking Networks and Adaptive Convolutional Kernels

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Time-varying Granger causality refers to patterns of causal relationships that vary over time between brain functional time series at distinct source and target regions. It provides rich information about the spatiotemporal structure of brain activity that underlies behavior. Current methods for this problem fail to quantify nonlinear relationships in source-target relationships, and require ad hoc setting of relationship time lags. This paper proposes deep stacking networks (DSNs), with adaptive convolutional kernels (ACKs) as component parts, to address these challenges. The DSNs use convolutional neural networks to estimate nonlinear source-target relationships, ACKs allow these relationships to vary over time, and time lags are estimated by analysis of ACKs coefficients. When applied to synthetic data and data simulated by the STANCE fMRI simulator, the method identified ground-truth time-varying causal relationships and time lags more robustly than competing methods. The method also identified more biologically-plausible causal relationships in a real-world task fMRI dataset than a competing method. Our method is promising for modeling complex functional relationships within brain networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Friston, K.: Functional and effective connectivity: a review. Brain connectivity 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  2. Deshpande, G., et al.: Multivariate Granger causality analysis of fMRI data. Hum. Brain Mapp. 30(4), 1361–1373 (2009)

    Article  MathSciNet  Google Scholar 

  3. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015)

    Article  Google Scholar 

  4. Friston, K., Moran, R., Seth, A.K.: Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23(2), 172–178 (2013)

    Article  Google Scholar 

  5. Goebel, R., et al.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 21(10), 1251–1261 (2003)

    Article  Google Scholar 

  6. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica: J. Econometric Society 424–438 (1969)

    Google Scholar 

  7. Liao, W., et al.: Kernel Granger causality mapping effective connectivity on fMRI data. IEEE Trans. Med. Imaging 28(11), 1825–1835 (2009)

    Article  Google Scholar 

  8. Zhou, Z., et al.: A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging. Magn. Reson. Imaging 29(3), 418–433 (2011)

    Article  Google Scholar 

  9. Ambrosi, P., et al.: Modeling Brain Connectivity Dynamics in Functional Magnetic Resonance Imaging via Particle Filtering. bioRxiv (2021)

    Google Scholar 

  10. Marcinkevičs, R., Vogt, J.E.: Interpretable Models for Granger Causality Using Self-explaining Neural Networks. arXiv preprint arXiv:2101.07600 (2021)

  11. Sato, J.R., et al.: A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality. Neuroimage 31(1), 187–196 (2006)

    Article  Google Scholar 

  12. Cekic, S., Grandjean, D., Renaud, O.: Time, frequency, and time-varying Granger-causality measures in neuroscience. Stat. Med. 37(11), 1910–1931 (2018)

    Article  MathSciNet  Google Scholar 

  13. Marinazzo, D., et al.: Nonlinear connectivity by Granger causality. Neuroimage 58(2), 330–338 (2011)

    Article  Google Scholar 

  14. Príncipe, J.C., Liu, W., Haykin, S.: Kernel adaptive filtering: a comprehensive introduction. John Wiley & Sons (2011)

    Google Scholar 

  15. Schoukens, J., Ljung, L.: Nonlinear system identification: a user-oriented road map. IEEE Control Syst. Mag. 39(6), 28–99 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ge, X., Lin, A.: Dynamic causality analysis using overlapped sliding windows based on the extended convergent cross-mapping. Nonlinear Dyn. 104(2), 1753–1765 (2021)

    Article  Google Scholar 

  17. Schiecke, K., et al.: Brain–heart interactions considering complex physiological data: processing schemes for time-variant, frequency-dependent, topographical and statistical examination of directed interactions by convergent cross mapping. Physiol. Meas. 40(11), 114001 (2019)

    Article  Google Scholar 

  18. Paus, T.: Inferring causality in brain images: a perturbation approach. Philosophical Trans. Royal Society B: Biological Sci. 360(1457), 1109–1114 (2005)

    Article  Google Scholar 

  19. Antonacci, Y., et al.: Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators. PeerJ Computer Science 7, e429 (2021)

    Article  Google Scholar 

  20. Tank, A., et al.: Neural granger causality. arXiv preprint arXiv:1802.05842 (2018)

  21. Wismüller, A., et al.: Large-scale nonlinear Granger causality for inferring directed dependence from short multivariate time-series data. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  22. Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015)

    Article  Google Scholar 

  23. Chuang, K.-C., Ramakrishnapillai, S., Bazzano, L., Carmichael, O.T.: Deep stacking networks for conditional nonlinear granger causal modeling of fMRI data. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 113–124. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_12

    Chapter  Google Scholar 

  24. Jia, X., et al.: Dynamic filter networks. Adv. Neural. Inf. Process. Syst. 29, 667–675 (2016)

    Google Scholar 

  25. Zamora Esquivel, J., et al. Adaptive convolutional kernels. in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019

    Google Scholar 

  26. Abadi, M., et al.: Tensorflow: A system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016)

    Google Scholar 

  27. Chollet, F.: keras (2015)

    Google Scholar 

  28. Koprowski, R.: Image processing. In: Processing of Hyperspectral Medical Images. SCI, vol. 682, pp. 39–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50490-2_4

    Chapter  Google Scholar 

  29. Murphy, K., Bodurka, J., Bandettini, P.A.: How long to scan? the relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 34(2), 565–574 (2007)

    Article  Google Scholar 

  30. Triantafyllou, C., et al.: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1), 243–250 (2005)

    Google Scholar 

  31. Berenson, G.S.: Bogalusa Heart Study: a long-term community study of a rural biracial (black/white) population. Am. J. Med. Sci. 322(5), 267–274 (2001)

    Article  Google Scholar 

  32. Carmichael, O., et al.: High-normal adolescent fasting plasma glucose is associated with poorer midlife brain health: bogalusa heart study. J. Clin. Endocrinol. Metab. 104(10), 4492–4500 (2019)

    Article  Google Scholar 

  33. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine: An Official J. Int. Society for Magnetic Resonance in Medicine 44(1), 162–167 (2000)

    Article  Google Scholar 

  34. Sheu, L.K., Jennings, J.R., Gianaros, P.J.: Test–retest reliability of an fMRI paradigm for studies of cardiovascular reactivity. Psychophysiology 49(7), 873–884 (2012)

    Article  Google Scholar 

  35. Guido, W.: Development, form, and function of the mouse visual thalamus. J. Neurophysiol. 120(1), 211–225 (2018)

    Article  Google Scholar 

  36. Usrey, W.M., Alitto, H.J.: Visual functions of the thalamus. Annual Review of Vision Sci. 1, 351–371 (2015)

    Article  Google Scholar 

  37. Duggento, A., Guerrisi, M., Toschi, N.: Echo state network models for nonlinear granger causality. Phil. Trans. R. Soc. A 379(2212), 20200256 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Cheng Chuang or Owen Carmichael .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuang, KC., Ramakrishnapillai, S., Bazzano, L., Carmichael, O. (2022). Nonlinear Conditional Time-Varying Granger Causality of Task fMRI via Deep Stacking Networks and Adaptive Convolutional Kernels. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics