Skip to main content

Embedding Human Brain Function via Transformer

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

BOLD fMRI has been an established tool for studying the human brain’s functional organization. Considering the high dimensionality of fMRI data, various computational techniques have been developed to perform the dimension reduction such as independent component analysis (ICA) or sparse dictionary learning (SDL). These methods decompose the fMRI as compact functional brain networks, and then build the correspondence of those brain networks across individuals by viewing the brain networks as one-hot vectors and performing their matching. However, these one-hot vectors do not encode the regularity and variability of different brains, and thus cannot effectively represent the functional brain activities in different brains and at different time points. To bridge the gaps, in this paper, we propose a novel unsupervised embedding framework based on Transformer to encode the brain function in a compact, stereotyped and comparable latent space where the brain activities are represented as dense embedding vectors. The framework is evaluated on the publicly available Human Connectome Project (HCP) task based fMRI dataset. The experiment on brain state prediction downstream task indicates the effectiveness and generalizability of the learned embeddings. We also explore the interpretability of the embedding vectors and achieve promising result. In general, our approach provides novel insights on representing regularity and variability of human brain function in a general, comparable, and stereotyped latent space.

L. Zhao and Z. Wu–Co-first authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn. Reson. Imaging 17(6), 795–815 (1999)

    Article  Google Scholar 

  2. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Google Scholar 

  3. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (2015)

    Google Scholar 

  4. Calhoun, V.D., Adali, T.: Unmixing fMRI with independent component analysis. IEEE Eng. Med. Biol. Mag. 25(2), 79–90 (2006)

    Article  Google Scholar 

  5. Dong, Q., et al.: Modeling hierarchical brain networks via volumetric sparse deep belief network. IEEE Trans. Biomed. Eng. 67(6), 1739–1748 (2019)

    Google Scholar 

  6. Dong, Q., Qiang, N., Lv, J., Li, X., Liu, T., Li, Q.: Spatiotemporal attention autoencoder (STAAE) for ADHD classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 508–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_50

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Li, Q., Dong, Q., Ge, F., Qiang, N., Wu, X., Liu, T.: Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder. Brain Imaging Behav. 15(5), 2646–2660 (2021). https://doi.org/10.1007/s11682-021-00469-w

    Article  Google Scholar 

  9. Liu, H., et al.: The cerebral cortex is bisectionally segregated into two fundamentally different functional units of gyri and sulci. Cereb. Cortex 29(10), 4238–4252 (2019)

    Google Scholar 

  10. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  11. Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62(4), 1120–1131 (2014)

    Google Scholar 

  12. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2014)

    Article  Google Scholar 

  13. Qiang, N., et al.: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder. J. Neural Eng. 18(4), 0460b6 (2021)

    Google Scholar 

  14. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  15. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. IEEE Trans. Med. Imaging 38(4), 1058–1068 (2018)

    Google Scholar 

  16. Woolrich, M.W., Ripley, B.D., Brady, M., Smith, S.M.: Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14(6), 1370–1386 (2001)

    Article  Google Scholar 

  17. Zhao, L., Dai, H., Jiang, X., Zhang, T., Zhu, D., Liu, T.: Exploring the functional difference of Gyri/Sulci via hierarchical interpretable autoencoder. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 701–709. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_66

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 157 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L. et al. (2022). Embedding Human Brain Function via Transformer. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics