Skip to main content

Semi-supervised Learning with Data Harmonisation for Biomarker Discovery from Resting State fMRI

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Computational models often overfit on neuroimaging datasets (which are high-dimensional and consist of small sample sizes), resulting in poor inferences such as ungeneralisable biomarkers. One solution is to pool datasets (of similar disorders) from other sites to augment the small dataset, but such efforts have to handle variations introduced by site effects and inconsistent labelling. To overcome these issues, we propose an encoder-decoder-classifier architecture that combines semi-supervised learning with harmonisation of data across sites. The architecture is trained end-to-end via a novel multi-objective loss function. Using the architecture on multi-site fMRI datasets such as ADHD-200 and ABIDE, we obtained significant improvement on classification performance and showed how site-invariant biomarkers were disambiguated from site-specific ones. Our findings demonstrate the importance of accounting for both site effects and labelling inconsistencies when combining datasets from multiple sites to overcome the paucity of data. With the proliferation of neuroimaging research conducted on retrospectively aggregated datasets, our architecture offers a solution to handle site differences and labelling inconsistencies in such datasets. Code is available at https://github.com/SCSE-Biomedical-Computing-Group/SHRED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sites with too few data (site CMU in ABIDE) or extreme class imbalance (sites KKI, SBL, SDSU in ABIDE; KKI, PITT, WUSTL in ADHD-200) were excluded.

  2. 2.

    In ABIDE I [9], 13 sites used clinical judgement along with the gold standard, while others used gold standards or clinical judgement only. There could be differences in clinical judgement, warranting the need to deal with label inconsistency.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

    Google Scholar 

  2. Almuqhim, F., Saeed, F.: ASD-SAENet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Front. Comput. Neurosci. 15, 27 (2021)

    Article  Google Scholar 

  3. Bartels, A., Blaschko, M., Shelton, J.: Augmenting feature-driven fMRI analyses: Semi-supervised learning and resting state activity. In: Advances in Neural Information Processing Systems, vol. 22 (2009)

    Google Scholar 

  4. Bellec, P., Chu, C., Chouinard-Decorte, F., Benhajali, Y., Margulies, D.S., Craddock, R.C.: The neuro bureau ADHD-200 preprocessed repository. Neuroimage 144, 275–286 (2017)

    Article  Google Scholar 

  5. Chen, C.P., et al.: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 8, 238–245 (2015)

    Google Scholar 

  6. Chen, Y., Li, G., Ide, J.S., Luo, X., Li, C.S.R.: Sex differences in attention deficit hyperactivity symptom severity and functional connectivity of the dorsal striatum in young adults. Neuroimage Rep. 1(2), 100025 (2021)

    Google Scholar 

  7. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  8. Di Martino, A., et al.: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 4(1), 1–15 (2017)

    Article  Google Scholar 

  9. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  10. Gupta, S., Chan, Y.H., Rajapakse, J.C., Initiative, A.D.N., et al.: Obtaining leaner deep neural networks for decoding brain functional connectome in a single shot. Neurocomputing 453, 326–336 (2021)

    Article  Google Scholar 

  11. Ingalhalikar, M., Shinde, S., Karmarkar, A., Rajan, A., Rangaprakash, D., Deshpande, G.: Functional connectivity-based prediction of autism on site harmonized abide dataset. IEEE Trans. Biomed. Eng. 68(12), 3628–3637 (2021)

    Article  Google Scholar 

  12. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127 (2007)

    Article  Google Scholar 

  13. Li, X., Gu, Y., Dvornek, N., Staib, L.H., Ventola, P., Duncan, J.S.: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med. Image Anal. 65, 101765 (2020)

    Article  Google Scholar 

  14. Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., et al.: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012)

    Google Scholar 

  15. Noman, F., et al.: Graph autoencoders for embedding learning in brain networks and major depressive disorder identification. arXiv preprint arXiv:2107.12838 (2021)

  16. Odaibo, S.: Tutorial: Deriving the standard variational autoencoder (VAE) loss function. arXiv preprint arXiv:1907.08956 (2019)

  17. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  18. Parkes, L., Satterthwaite, T.D., Bassett, D.S.: Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Curr. Opin. Neurobiol. 65, 120–128 (2020)

    Article  Google Scholar 

  19. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  Google Scholar 

  20. Rakić, M., Cabezas, M., Kushibar, K., Oliver, A., Llado, X.: Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage Clin. 25, 102181 (2020)

    Article  Google Scholar 

  21. Ramos, T.C., Balardin, J.B., Sato, J.R., Fujita, A.: Abnormal cortico-cerebellar functional connectivity in autism spectrum disorder. Front. Syst. Neurosci. 12, 74 (2019)

    Article  Google Scholar 

  22. Schnack, H.G., Kahn, R.S.: Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front. Psych. 7, 50 (2016)

    Google Scholar 

  23. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

    Google Scholar 

  24. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  25. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Varoquaux, G.: Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2018)

    Article  Google Scholar 

  27. Vogt, B.A.: Cingulate impairments in ADHD: comorbidities, connections, and treatment. Handb. Clin. Neurol. 166, 297–314 (2019)

    Article  Google Scholar 

  28. Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, M.: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 39(3), 644–655 (2019)

    Article  Google Scholar 

  29. Yu-Feng, Z., et al.: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Develop. 29(2), 83–91 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagath C. Rajapakse .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1583 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, Y.H., Yew, W.C., Rajapakse, J.C. (2022). Semi-supervised Learning with Data Harmonisation for Biomarker Discovery from Resting State fMRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics