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Abstract. In the management of lung nodules, we are desirable to pre-
dict nodule evolution in terms of its diameter variation on Computed
Tomography (CT) scans and then provide a follow-up recommendation
according to the predicted result of the growing trend of the nodule. In
order to improve the performance of growth trend prediction for lung
nodules, it is vital to compare the changes of the same nodule in consec-
utive CT scans. Motivated by this, we screened out 4,666 subjects with
more than two consecutive CT scans from the National Lung Screen-
ing Trial (NLST) dataset to organize a temporal dataset called NLSTt.
In specific, we first detect and pair regions of interest (ROIs) covering
the same nodule based on registered CT scans. After that, we predict
the texture category and diameter size of the nodules through models.
Last, we annotate the evolution class of each nodule according to its
changes in diameter. Based on the built NLSTt dataset, we propose a
siamese encoder to simultaneously exploit the discriminative features of
3D ROIs detected from consecutive CT scans. Then we novelly design
a spatial-temporal mixer (STM) to leverage the interval changes of the
same nodule in sequential 3D ROIs and capture spatial dependencies of
nodule regions and the current 3D ROI. According to the clinical di-
agnosis routine, we employ hierarchical loss to pay more attention to
growing nodules. The extensive experiments on our organized dataset
demonstrate the advantage of our proposed method. We also conduct
experiments on an in-house dataset to evaluate the clinical utility of our
method by comparing it against skilled clinicians. STM code and NLSTt
dataset are available at https://github.com/liaw05/STMixer.
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1 Introduction

According to current management guidelines of lung nodules [12,23], it is highly
desirable to perform relatively close follow-up for lung nodules detected as sus-
picious malignant, then give clinical guidance according to their changes during
the follow-up [4]. It is recommended to extend the follow-up time for some slow-
growing nodules and perform surgery on time for some nodules that are small
but speculated to grow fast. However, the imprecise follow-up recommendations
may yield high clinical and financial costs of missed diagnosis, late diagnosis,
or unnecessary biopsy procedures resulting from false positives [1]. Therefore, it
is imperative to predict the growth trend of lung nodules to assist doctors in
making more accurate follow-up decisions, thereby further reducing false posi-
tives in lung cancer diagnosis. Although deep learning approaches have been the
paradigm of choice for fast and robust computer-aided diagnosis of medical im-
ages [1,27], there are few related studies on the use of data-driven approaches for
assessing the growth trend of lung nodules, since it is hard to acquire large-scale
sequential data and without ground-truth dynamic indicators.

Current clinical criteria for assessing lung nodule changes rely on visual com-
parison and diameter measurements from the axial slices of the consecutive com-
puted tomography (CT) images [10]. The variation of nodule diameter between
two consecutive CT scans reflects the most worrying interval change on CT
follow-up screening. Applying the variation of nodule diameter to evaluate the
growth trend has been a routine method [8,19,26,20]. Zhe et al. manually calcu-
late nineteen quantitative features (including nodule diameter) of the initial CT
scans to identify the growth risk of pure ground-glass nodules (GGN) [17]. Xavier
et al. match the same nodule given the list of nodule candidates by computing
the difference in diameter between them [14]. In this paper, inspired by existing
medical research [17,24], we organize a new temporal dataset of CT scans to
predict the evolution of lung nodules in terms of diameter variation.

To achieve this, we screened out 4,666 subjects with more than two con-
secutive CT scans from the NLST dataset to organize a temporal CT dataset
called NLSTt. We first detect regions of interest (ROIs) covering nodules after
CT registration. Then, we pair the sequential 3D ROIs with the same nodule,
followed by segmentation and classification, nodule types and diameter sizes are
automatically annotated. Last, we assign one of three evolution classes (dilata-
tion, shrinkage, stability) for each nodule in terms of its changes in diameter size.
Based on automatically labeling evolution classes of each nodule in the NLSTt
dataset, we further perform manually double-blind annotation and experienced
review to acquire reliable labels for training a deep learning network to address
the growth trend prediction. Given the inputs of 3D ROI pairs, we first introduce
a siamese encoder [3,14] to extract local features (lesion region) of two ROIs and
global features of the current ROI. In order to jointly exploit the interval dif-
ferences of lesions as well as the spatial dependencies between lesions and whole
ROIs, we design a novel spatial-temporal mixer (STM) to leverage spatial and
temporal information. In addition, we employ hierarchical loss (H-loss) [25] to
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Fig. 1. The pipeline of organizing the temporal CT dataset (NLSTt), including CT
scan registration, ROI pairing, and class annotation. The letter d denotes the diameter
of lung nodules, and c indicates their corresponding texture types, i.e., solid, part-solid
(PS), ground-glass nodule (GGN).

pay more attention to the nodule growth (dilatation class) related to possible
cancerogenesis in clinical practice.

Our contributions are summarized as follows: (1) To drive the prediction
of lung nodule evolution, we organize a new temporal CT dataset called NL-
STt by combing automatic annotation and manual review. (2) We propose a
spatial-temporal mixer (STM) to leverage both temporal and spatial informa-
tion involved in the global and lesion features generated from 3D ROI pairs.
(3) We conduct extensive experiments on the NLSTt dataset to evaluate the
performance of our proposed method and confirm the effectiveness of our model
on an in-house dataset from the perspective of clinical practice.

2 Materials and Methods

2.1 NLSTt Dataset Acquisition

Lots of subjects enrolled in the NLST dataset [21] cover scans from multiple time
points (typically T0, T1, and T2 scans taken one year apart) as well as biopsy
confirmations for suspicious lesions [22]. In this work, to advance the research of
the growth trend prediction of lung nodules, we organize a temporal CT dataset
named NLSTt by screening out 4,666 subjects from NLST, each of which has at
least two CT scans up to 2 years apart from the NLST dataset.

Fig 1 illustrates the pipeline of our data organization approach, which aims
to ascertain the evolution class and texture type of nodules in consecutive CT
scans for the selected subjects. We first perform 3D image registration for the
second (T1) and third (T2) CT scans in terms of the first scan (T0). After that,
we identify 3D ROIs containing lung nodules by a detector, and then pair ROIs
to match the same nodule in multiple 3D ROIs at different time points. Next,
we employ a segmenter to automatically crop out the lesion of nodules in ROIs
to calculate their diameters. At the same time, we apply a classifier to identify
the texture types of nodules (i.e., GGN, solid, part-solid (PS)). In specific, two
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Fig. 2. Three evolution classes (dilatation, shrinkage, stability) of lung nodules in the
NLSTt dataset. We depict the variation of nodule diameter (in millimeter) at three
consecutive time points (T0, T1, T2) for three nodule types by horizontal histograms.

popular CT datasets LUNA16 [16] and LNDb [13] are used to train our models,
in which the detector for ROI identification is a 3D variant of the CenterNet
[28], the segmenter for lesion segmentation is a multi-scale 3D UNet [9,15], and
the classifier is the variant of the segmenter attaching a fully-connected layer.

In the above pipeline of organizing the NLSTt dataset, we first make reg-
istrations for the consecutive CT scans of each patient, then detect nodules.
For the detected two nodules at T0 and T1, the pair criterion is that the Eu-
clidean distance between the center points of the two nodules is less than 1.5
millimeters. If the nodule location changes significantly between T0 and T1
(> 1.5 millimeters), we assert that they are not the same nodule. Finally, we
ask experienced clinicians to review to ensure the accuracy of paring nodules
correctly. After automatically inferring the diameters and texture types, we rely
on experienced clinicians to calibrate the labels by manually annotation. By
combining automatic inference and manual review, we acquire the reliable label
of nodules regarding the texture type and evolution class, the latter of which
is determined by the diameter change of a nodule at consecutive time points.
Finally, we complete the construction of the NLSTt dataset. Next, we discuss
the details regarding how to construct the labels of evolution classes for nodules.

The evolution class of a nodule is based on the changes in diameter size.
The diameter is the longest side of the smallest circumscribed rectangle on the
maximal surface of the nodule mask generated by the segmenter. We formulate
three evolution classes of lung nodules according to the diameter change of the
same nodule at different time points as stability, dilatation, and shrinkage, as
shown in Fig 2. If the diameter variation of lung nodules at two consecutive
CT scans is less than 1.5 millimeters, we refer to such trend as stability. If the
diameter of lung nodules of twice CT scans varies more than 1.5 millimeters,
we define the increment as dilatation and the reduction as shrinkage. In the
following part, we present our proposed method for growth trend prediction.

2.2 Spatial-Temporal Mixer

Fig. 3 overviews our proposed method for growth trend prediction, including a
siamese encoder, a spatial-temporal mixer (STM), and a two-layer hierarchical
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Fig. 3. Schematic of our proposed method, including a siamese encoder, a spatial-
temporal mixer (STM) and a two-layer H-loss. MLP is a multilayer perception, FG1

denotes the global information of T1, FL1 indicates the local information of the lesion
patch in T1, and FL0 is local information of the lesion patch in T0.

loss (H-loss). For a given subject, the 3D ROI pairs (T0 and T1) containing
lesions are taken from CT scans at different time points, and then fed into a
siamese encoder for embedding. Besides, an extra learnable global embedding is
introduced to extract the global information of 3D ROIs [2]. Both encoders in
the siamese encoder share the same weights, and we adopt the vision transformer
(ViT) [2,6] and convolutional neural network (CNN) [7] as the backbone of the
siamese encoder. We obtain three embedding vectors from sequential 3D ROIs
by the siamese encoder: FG1 contains global information of T1, FL1 contains
local information of the lesion patch in T1, and FL0 contains local information
of the lesion patch in T0. We supplement a learnable embedding FL0 if T0 is
missing, which occurs when a subject has only two CT scans.

It is worth mentioning that the global information of ROIs is changeless
on T0, T1, and T2. Hence, we only learn global information from T1 without
considering the global information of T0. On the contrary, the local information
of the same nodule in T0, T1, and T2 are different and highly discriminative
for growth trend prediction. Therefore, we learn local information from both T0
and T1 to capture the evolving local information.

Given the embeddings obtained from the siamese encoder, we propose a
spatial-temporal mixer (STM) module to leverage spatial and temporal informa-
tion. We firstly introduce a layer normalization, a multi-layer perception (MLP),
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and a residual addition operation on the three embeddings FL1, FG1, and FL0.
After that, in order to fuse spatial and temporal information, we apply a linear
projection to obtain a query vector QL1 from FL1, and two key vectors KG1

and KL0 from FG1 and FL0, respectively. The spatial information is captured
by FG1 ·Sim(QL1,KG1), where Sim(QL1,KG1) is the cosine similarity between
the query-key pair of local and global embeddings of T1. Similarly, the temporal
information is captured by FL0 · Sim(QL1,KL0), where Sim(QL1,KL0) is the
cosine similarity between the query-key pair of local embeddings of T1 and T0,
which are collected at different time points. Next, we fuse the spatial and tempo-
ral information with an addition operation and a linear projection (LP). Finally,
STM outputs an embedding based on the spatial-temporal information and the
current local embeddings FL1. In summary, the output of STM is computed as:

FL1 + LP (Sim(QL1,KG1) · FG1 + Sim(QL1,KL0) · FL0). (1)

2.3 Two-layer H-loss

After feature fusion by STM, we are ready to train a model for predicting
the growth trend. We employ H-loss, which extends the weighted cross-entropy
(WCE) loss function to enhance the contribution of the dilatation class by hier-
archical setting. It is more cautious and attentive to the nodule growth related
to possible cancerogenesis in clinical practice. Hence, it is vital to achieving high
predictive accuracy for the dilatation class. To this end, we build a two-layer
H-loss (H1, H2) including two separate fully-connected (FC) layer modules to
analog clinical diagnosis routine. Based on three evolution classes of nodules,
H1 first classifies dilatation or not for paying more attention to the dilatation
class. And H2 inherits H1 to predict shrinkage or stability. The leakage node
in H2 here only involves dilatation. The two-layer H-loss unifies the predictive
probabilities and the ground-truth label y to train our model, as follows:

L = α ·WCE(PH1, y) +WCE(PH2, y), (2)

where PH1 and PH2 are the probability output of H1 and H2 layers, respectively.
When α = 0, H-loss is a three-class WCE equivalent to H2. For H2, we set differ-
ent weights for different classes in WCE to combat class imbalance. The weights
of dilatation, shrinkage and stability in H2 are 1.0, 1.0, and 0.1, respectively.
During model inference, we predict the evolution class of T2 by H1 or H2 layer.

3 Experiments

3.1 Experimental Settings

Datasets. Table 1 shows the statistical information of the datasets. Our or-
ganized dataset NLSTt with 4,666 subjects is split into a training set (3, 263
subjects), a validation set (701 subjects), and a test set (702 subjects). In ad-
dition, we collect CT scans of 199 subjects and adopt the same preprocessing
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Table 1. Statistics of benchmark splits of the NLSTt dataset and in-house dataset*.

Types
Train Set Validation Set Test Set In-house Set

⇒ ⇑ ⇓
∑

⇒ ⇑ ⇓
∑

⇒ ⇑ ⇓
∑

⇒ ⇑ ⇓
∑

GGN 2,496 153 34 2,683 527 28 9 564 612 35 11 658 123 6 0 129
Solid 3,804 235 82 4,121 833 40 27 900 827 47 18 892 334 12 6 352
PS 97 39 12 148 14 8 4 26 21 13 3 37 3 3 0 6

Totals 6,397 427 128 6,952 1,374 76 40 1,490 1,460 95 32 1,587 460 21 6 487

* ⇒ denotes stability, ⇑ indicates dilatation, ⇓ represents shrinkage, and
∑

ag-
gregates the number of three evolution trends for each nodule type.

Table 2. AUC (in %) of different mixers and encoders on the test and in-house sets.

Encoder Mixer
Test Set In-house Set

AUC@H1 AUC@H2 AUC@H1 AUC@H2

CNN
Concat 80.8 75.3 67.2 67.2
MFC 81.2 75.2 69.4 66.7
LSTM 81.8 75.0 64.0 71.0

STM (Ours) 83.0 76.3 73.5 71.6

ViT
Concat 82.6 75.2 64.2 64.1
LSTM 82.6 76.3 67.1 74.7

STM (Ours) 83.6 77.5 72.8 78.5

approach used for NLSTt to organize an in-house dataset, which is used to eval-
uate the practicality of our model by comparing it against the clinicians.

Optimizer. We apply the AdamW optimizer [11] to train our model, in
which CNN encoders adopt ResNet34-3D [7] and are trained from scratch, and
ViT encoders are trained on the pre-trained model which uses the MAE method
[6]. The batch size is set as B = 16 for all the conducted methods. We warm
up [5] the learning rate from 10e − 6 to lr × B/64 in the first 5 epochs, where
lr = 5e−4, and then schedule the learning rate by the cosine annealing strategy
[11]. The parameters of networks are optimized in 60 epochs with a weight decay
of 0.05 and a momentum of 0.9.

3.2 Results and Discussions

Gain analysis for our STM. Table 2 reports the Area Under the Curve
(AUC) of H1 (AUC@H1) and H2 (AUC@H2) layers for four feature fusion meth-
ods (Concat, MFC, LSTM, our STM) based on CNN and ViT encoders. MFC
[14] combines feature maps of 3D ROI pairs and employs CNN as the encoder.
Hence, we only compare MFC and our STM based on the CNN encoder. On
the test set, ViT-based STM achieves the best performances. For the in-house
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Table 3. ACC and Kappa of nodule types of the test set on different methods.

Method
Test Set Extra In-house Set

Accuracy Kappa Accuracy Kappa
GGN Solid PS GGN Solid PS GGN Solid PS GGN Solid PS

CNN+STM 90.9 88.2 56.8 27.6 25.7 26.2 87.6 91.2 58.1 14.4 7.6 27.2
ViT+STM 92.4 91.6 59.5 29.1 33.7 29.2 93.8 90.6 60.5 46.9 13.4 29.2

Clinician A - - - - - - 85.3 93.2 60.5 19.0 19.8 23.9
Clinician B - - - - - - 86.0 94.0 62.8 21.0 14.0 20.2

Table 4. AUC of two-layer H-loss with varying α on CNN encoders and our STM.

α
Test Set In-house Set

AUC@H1 AUC@H2 AUC@H2-D AUC@H1 AUC@H2 AUC@H2-D

0.0 - 73.2 80.3 - 62.7 63.5
0.5 82.8 78.2 82.8 71.1 71.1 66.6
1.0 83.0 76.3 83.4 73.5 71.6 73.6

set, CNN-based STM obtains the best AUC@H1, and ViT-based STM gets the
best AUC@H2. By further observing the high profits of ViT-based three mixers,
we argue that the ViT-based siamese encoder exhibits better robustness than
the CNN-based one. Furthermore, with either CNN- or ViT-based encoders, our
STM brings more gains than LSTM and Concat on the test set and in-house
set. Our STM also consistently outperforms MFC on two datasets in terms of
two metrics. The Concat method for feature fusion only linearly combines the
three embedding vectors without capturing their inter-dependencies. Hence, the
predictive capability is lower than LSTM, which captures the temporal changes
of two lesion features (FL0, FL1) extracted from T0 and T1. Besides the inter-
val differences of lesion features at different time points. Our STM also exploits
spatial dependencies of the global features FG1 and lesion features FL1 of T1,
thus achieves the best performance.

Discussion of clinical practice. Based on the confirmation of the advan-
tage of our STM, we further observe its performance on three nodule types and
clinical applications. Since there are only six part-solid samples in the in-house
set, we build an extra in-house set, which uses all the 37 part-solid samples
from the test set to assemble a total of 43 part-solid samples for evaluation. As
Table 3 shows, ViT-based STM obtains better Accuracy and Kappa [18] than
CNN-based STM on three nodule types of the test set. By comparing with two
skilled clinicians, ViT-based STM outperforms clinicians A and B on GGN while
slightly weaker on solid. For part-solid, ViT-based STM achieves better Kappa
but lower Accuracy than clinicians. This demonstrates that our model can carry
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out clinical practice in terms of GGN, solid, and part-solid. We show several
cases predicted by our model and clinicians in Appendix A1.

Utility of two-layer H-loss. Table 4 shows the ablation studies of the
hyper-parameter α in Eq. (2). AUC@H2-D is the AUC of the dilatation class on
the H2 layer. According to AUC@H2 on the test and in-house sets, two-layer H-
loss exhibits a significant advantage over the H2 layer (α = 0) alone. Among the
three evolution classes, considering clinical meaning, we preferentially ensure the
predictive accuracy of the growth trend. Hence, we pay more attention on the
dilatation class with the help of the two-class H1 layer. The significant difference
of AUC@H2-D between α = 0 and α = 1 demonstrates the benefits of our
strategy.

4 Conclusions

In this work, we explore how to predict the growth trend of lung nodules in
terms of diameter variation. We first organize a temporal CT dataset including
three evolution classes by automatic inference and manual review. Then we pro-
pose a novel spatial-temporal mixer to jointly exploit spatial dependencies and
temporal changes of lesion features extracted from consecutive 3D ROIs by a
siamese encoder. We also employ a two-layer H-loss to pay more attention to the
dilatation class according to the clinical diagnosis routine. The experiments on
two real-world datasets demonstrate the effectiveness of our proposed method.
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