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Abstract. The COVID-19 pandemic has threatened global health. Many
studies have applied deep convolutional neural networks (CNN) to rec-
ognize COVID-19 based on chest 3D computed tomography (CT). Re-
cent works show that no model generalizes well across CT datasets from
different countries, and manually designing models for specific datasets
requires expertise; thus, neural architecture search (NAS) that aims to
search models automatically has become an attractive solution. To re-
duce the search cost on large 3D CT datasets, most NAS-based works
use the weight-sharing (WS) strategy to make all models share weights
within a supernet; however, WS inevitably incurs search instability, lead-
ing to inaccurate model estimation. In this work, we propose an efficient
Evolutionary Multi-objective ARchitecture Search (EMARS) frame-
work. We propose a new objective, namely potential, which can help
exploit promising models to indirectly reduce the number of models in-
volved in weights training, thus alleviating search instability. We demon-
strate that under objectives of accuracy and potential, EMARS can bal-
ance exploitation and exploration, i.e., reducing search time and finding
better models. Our searched models are small and perform better than
prior works on three public COVID-19 3D CT datasets.

Keywords: COVID-19 · Neural Architecture Search (NAS) · Weight-
sharing · Evolutionary Algorithm (EA) · 3D Computed Tomograph (CT)

1 Introduction

The rapid spread of coronavirus disease 2019 (COVID-19) pandemic has threat-
ened global health. Isolating infected patients is an effective way to block the
transmission of the virus. Thus, fast and accurate methods to detect infected
patients are crucial. Chest CT is relatively easy to perform and has been proved
an important complement to nucleic acid test [7]. However, there is a serious
lack of radiologists during the pandemic. Many researchers have applied deep
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learning (DL) techniques to assist CT diagnosis. For COVID-19 3D CT clas-
sification, there are two mainstream CNN-based methods: 1) multiview-based
methods [15,22] use 2D CNN to extract features for each 2D CT slice and then
fuse these features to make predictions; and 2) voxel-based methods [8, 32] feed
3D CNNs with 3D CT scans to make full use of the geometric information. He
et al. [9] benchmark a series of hand-crafted 2D and 3D CNNs and demonstrate
that 3D CNNs generally outperform 2D CNNs.

Some recent works [8, 11] benchmark multiple COVID-19 datasets from dif-
ferent countries and find that no model can maintain absolute advantages on
different datasets. However, since it is difficult to design models manually for
specific datasets, the neural architecture search (NAS) [6, 10] has become an
attractive solution to discover superior models without human assistance. Rein-
forcement learning [21, 33], gradient descent (GD) [18], and evolutionary algo-
rithm (EA) [23,30] are three mainstream NAS methods. The comparative results
of a recent survey [10] show that the EA-based NAS can discover better networks
than other types of NAS methods. However, the better performance of EA-based
NAS is at the cost of more computing resources because they need to retrain all
searched models to compare their performance, e.g., AmoebaNet [23] took 3,150
GPU days to search. Thanks to the weight-sharing method [21, 29], any model
can be evaluated without retraining, and Yang et al. [30] reduced the search time
of the EA-based NAS to 0.4 GPU days. NAS was originally proposed for large-
scale 2D image tasks. Although some works [8, 9] have extended NAS to search
3D models for COVID-19 3D datasets, they suffered from the search instability
(analyzed in Sec. 3.1) incurred by weight-sharing, which leads to fluctuation in
the search process and even worse results than random search in some cases. In
this work, we propose an efficient Evolutionary Multi-objective ARchitecture
Search framework, dubbed as EMARS. We summarize our contributions below.

1. We propose a new objective, i.e., potential, which can help exploit promis-
ing models and indirectly reduce the number of models involved in weights
training, thereby alleviating search instability.

2. We demonstrate that compared to conventional objective settings (e.g., only
considering accuracy), EMARS that aims at accuracy, potential, and small
size objectives can trade-off between exploitation and exploration, reducing
search time by 22% on average and discovering better models.

3. Our searched models are small in size and outperform prior works [8, 9] on
three public datasets: CC-CCII [31], MosMed [20], and Covid-CTset [22].

2 Preliminaries

In this section, we describe the common basis of weight-sharing neural architec-
ture search (NAS) [29]. NAS is formulated as a bi-level optimization problem:

minα Lval (w∗, α)
s.t. w∗ = argminw Ltrain (w,α)

(1)
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where Ltrain and Lval indicate the training and validation loss; w and α indicate
the weights and architecture of a candidate model. The early NAS methods [23,
33] search and evaluate the networks by retraining them from scratch, resulting
in huge computational cost. To reduce the burden, the weight-sharing strategy
[29] was proposed, in which the SuperNet N contains all possible architectures
(subnets) and its weights W are shared among these subnets. The architecture
and weights of each subnet are denoted byN (α) andW(α), respectively, where α
is the subnet architecture, encoded by one-hot sequences (described in Sec. 3.3).
The loss of a subnet is expressed as L(α) = L(N (α),W(α), X, Y ), where L,X, Y
indicate the loss function, input data, and target, respectively, and the gradient of

subnet weights is ∇W(α) =
∂L(α)
∂W . Then gradients of SuperNet weights W can be

calculated as the average gradient of all subnets, i.e., ∇W = 1
N

∑N
i=1 ∇W(αi) =

1
N

∑N
i=1

∂L(αi)
∂W , where N is the total number of subnets. Obviously, it is not

practical to use all subnets to update SuperNet weights at each time. Therefore,
we use a mini-batch of subnets for training, detailed as Eq. 2

∇W ≈ 1

M

M∑

i=1

∇W(αi) (2)

where M is the number of subnets sampled in a mini-batch and M << N . In
our experiments, we find that M = 1 works just fine, i.e., we can update W
using the gradient from any single sampled subnets for each training batch.

3 Methodology

3.1 Potential objective: Alleviating Search Instability

By instability, we mean that the same subnet can produce a completely different
performance at different times of the search process. The instability is caused
by the weight-sharing strategy because the weights of all subnets are coupled,
then an update of any subnet’s weights is bound to affect (usually negatively)
other subnets. Therefore, the performance of a subnet at a specific time does
not necessarily represent its real performance but instead misleads the direction
of evolutionary search (described in Sec. 3.2). To mitigate the search instability
caused by weight-sharing, a natural idea is to reduce the number of models
involved in weights training (i.e., Eq. 2). For this reason, some works [2, 13]
directly reduce the number of models by progressively shrinking the search space
based on the model performance, but this may eliminate promising models in the
early stage of the search. To avoid this problem, we take an indirect approach in
which we keep exploring various models in the early stage of the search and then
spend more effort on training those promising models in the later stage of the
search. In this way, we can indirectly reduce the number of models involved in
weights training without deliberately reducing the search space. However, how
do we determine whether a model is promising or not?
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Here, we propose a new objective, namely potential, to help find promising
models. Specifically, for each sampled model, we maintain and update its his-
torical performances Z = (E,F ), where E = [e1, ..., em]T is a column vector
recording the epochs when the model is sampled, F = [f1, ..., fm]T is a column
vector recording the corresponding validation accuracy. Note that, Z is dynami-
cally updated with the search process, so the size of Z (i.e., m) varies for models.
The potential P of a model is calculated by ordinary least squares (OLS):

P = (ETE)−1ETF (3)

To some extent, E can also reflect how promising a model is, e.g., if E is densely
distributed, it means this model outperforms other models in multiple rounds
of search and hence wins more chances to be sampled. However, considering
only E will exacerbate the Matthew effect, and the search may get trapped in
a local optimum. Our proposed potential solves this problem by considering the
coupling relation between sampling frequency E and validation accuracy F , i.e.,
the growing trend of accuracy rather than the accuracy at a specific time. The
larger the P value, the more promising the model is.

3.2 Evolutionary Search

The search algorithm (see Supplement Alg. 1) starts with a warm-up stage, fol-
lowed by the evolutionary search stage. In the warm-up, the SuperNet is trained
by uniformly sampling subnets, thus all candidate operations are trained equally.
After the warm-up, top-P best-performing subnets form the initial population,
i.e.,A(0), and will be evolved for multiple generations. Each generation comprises
two sequential processes: 1) weights training, where each individual (i.e., subnet)
is selected from the population and trained based on Eq 2; and 2) architecture
search, comprising selection, crossover, and mutation (see Fig. 1).

Selection. After weights training, we record multiple objectives for all indi-
viduals in the population. We adopt NSGA-II [4] method to select Pareto-front
individuals under the recorded objectives from the population. We compare dif-
ferent combinations of these objectives in Sec. 4.2 and find that searching with
potential and accuracy can discover better models with less cost.

Crossover&Mutation. The selection produces K Pareto-front individuals,
based on which we further generate P −K new individuals. Each new individual
is generated by randomly sampling from the SuperNet or performing crossover
and mutation (CM) with certain probabilities. The basic unit of CM is the one-
hot sequence, representing the candidate operation (see Fig. 1).

Exploitation&Exploration. Fig. 1 (lower-right) shows an example of two
important issues in the evolutionary algorithm (EA) based search: exploration
and exploitation. Exploitation prefers the current optimal solution, which reduces
search cost but may lead to a local optimum; exploration is more likely to find
the optimal solution but consumes more resources. The common opinion about
EA is that the steps of crossover and mutation determine the exploration, and
exploitation is done by selection. However, our experiments in Sec. 4.2 show that
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Fig. 1. Overview of search space and search method. Upper-right: MBConv3 3, where
C, D, H, W indicate channels, depth, height, and width. Lower-right: An example of
exploitation and exploration under different objectives. (best viewed in color)

setting different objectives in the selection step can also control the evolution
direction. Specifically, accuracy and potential will make the evolution process
towards exploration and exploitation, respectively, while combining accuracy
and potential can balance exploration and exploitation.

3.3 Search Space

SuperNet. The search space is represented by a SuperNet N , containing all
possible subnets. SuperNet comprises two parts: 1) the searchable part, i.e.,
N = 6 layers; 2) the fixed part, i.e., stem block, global average pooling [17], and
a fully connected layer. The stem block is a standard 3× 3× 3 3D convolution
followed by a 3D batch normalization and a ReLu6 activation function [12].

Layer. The i-th layer comprises a calibration block and Bi searchable blocks.
The calibration block is a 3D 1×1×1 point-wise convolution to solve the problem
of feature dimension mismatch; thus, all subsequent blocks have a stride of 1.
The number of searchable blocks and the stride of calibration block in six layers
are [4,4,4,4,4,1] and [2,2,2,1,2,1], respectively. The output channels of the stem
block and six layers are 32 and [24,40,80,96,192,320], respectively.

Block. Each searchable block is a candidate operation, encoded by a one-
hot sequence. We adopt eight candidate operations, including a skip-connection
operation and seven mobile inverted bottleneck convolutions [24], denoted by
MBConvk e, where k e ∈ {3 3, 3 4, 3 6, 5 3, 5 4, 7 3, 7 4}, k is the kernel size of
the intermediate depth-wise convolution (DWConv), and e is the expansion ratio
between the input channel and inner channel of MBConv.
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4 Experiments

4.1 Implementation Details

Datasets. For a fair comparison, we apply the same three datasets as prior
works [8,9]. CC-CCII [31] has 3,993 CT scans of three classes: novel coronavirus
pneumonia (NCP), common pneumonia (CP), and normal case; MosMed [20]
has 1,110 scans of NCP and normal classes; Covid-CTset [22] has 526 scans of
NCP and normal classes. More details of datasets can be referred to supplement.

Search stage. We use four Nvidia V100 GPUs to search for 100 epochs,
where the warm-up stage has 10 epochs. During each search epoch, a population
of models are equally trained on the training set and evaluated on the validation
set. The population size is 20, where 10 Pareto-front models are selected from
the population using NSGA-II [4] under multiple objectives (e.g., validation ac-
curacy, potential, and model size), and 10 new models are generated by crossover
and mutation with the probabilities of 0.3 and 0.2. To improve search efficiency,
we set the input size (width × height × depth) to 64 × 64 × 16. We use Adam
optimizer [14] with a weight decay of 3e-4 and an initial learning rate of 0.001.

Retraining stage. After the search stage, we combine the training and
validation set and retrain the Pareto-front models on the combined set for 200
epochs. We use the same Adam settings as the search stage. The 3D input sizes of
CC-CCII, MosMed, and Covid-CTset datasets are 128×128×32, 256×256×40,
and 512×512×32, respectively. Our framework is based on NNI [19] and available
at: https://github.com/marsggbo/MICCAI2022-EMARS.

4.2 Results and Analysis

Fig. 2. The model size-aware search results. X and Y axes indicate model size and
validation accuracy (Acc). The purple and yellow points indicate the sampled models
in the first and last half of the search stage, respectively. (best viewed in color)

Model Size-aware Search. Fig. 2 presents model size-aware search results
on CC-CCII dataset. Fig. 2 (a) shows that searching under only validation ac-
curacy (Acc) will explore both extremes of model size, but with no performance
gain, while Fig. 2 (b)&(c) show that additional consideration of model size on
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Fig. 3. The potential (P) aware search results. Different colored points indicate the
models sampled in different epoch periods. The solid and dashed lines in each period
indicate the average and 25/75 percentile accuracy, respectively. (best viewed in color)

top of Acc helps find better models in the later stage, indicating multi-objective
can facilitate the search process. Besides, compared to Fig. 2 (b), searching un-
der Acc and small model size in Fig. 2 (c) can not only reduce search time from
9.31 hours to 8.46 hours but also discover competitive models.

Potential-aware Search. We further build three experiments on the CC-
CCII dataset to validate potential objective. Each sub-figure of Fig. 3 divides
the search process into four periods based on the search epoch. Each period
is presented with different colors and marked with the accuracy of 25/50/75th
percentiles. Fig. 3 (a) shows that searching under Acc tends to explore more
models, regardless of whether the model performance is good or bad, leading to
wasting time on those unpromising models (lower-right points). On the contrary,
in Fig. 3 (b), the difference between the 25th and 75th percentiles and the
number of sampled models are gradually reduced with the search process, which
implies that potential will guide the evolution process in the later stage to exploit
promising models already discovered. Although it reduces search time, it has
lower Acc due to being trapped in local optima in the early stage. Fig. 3 (c)
shows that searching under potential, Acc, and small size can reduce the search
time by 19% on average and balance exploitation and exploration. Specifically,
the first two periods are dominated by exploration, as a wide accuracy range of
models is explored, and we can find models with an accuracy of more than 0.7
faster in the second period. On the other hand, the last two periods focus more
on exploitation, as the number of unpromising models is significantly reduced,
and the accuracy of 25/50/75th percentiles is improved steadily.

Comparison with Prior Works. Table. 1 compares our searched mod-
els with prior works based on four widely used metrics: accuracy, precision,
sensitivity, and f1 score. Precision and sensitivity are a pair of negatively cor-
related metrics, so they cannot fully describe model performance. F1 score is
the harmonic mean of the precision and sensitivity; thus, it is a better metric.
As can be seen, our models searched under APS (accuracy, potential, and small
model size) objectives have small sizes and outperform all prior hand-crafted
and NAS-based models on three datasets in terms of accuracy, precision, and
f1 score. Besides, MosMed is an imbalanced dataset, and we can find that the
models (e.g., CovidNet3D-S/L and EMARS-A) searched without potential are
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overfitted on positive class (i.e., NCP), as they have extremely high sensitivity
but low precision. On the contrary, EMARS-P and EMARS-APS are searched
with potential objective, balancing precision and sensitivity well and achieving
higher accuracy and f1 scores. More results can be referred to the Supplement.

Table 1. Results on CC-CCII [31], MosMed [20], and Covid-CTset [22] datasets. A,
P, and S in our model name indicate accuracy, potential, and small model size, e.g.,
EMARS-A indicates the model searched under the accuracy objective.

Dataset Model Size (MB) Type Accuracy Precision Sensitivity F1

CC-
CCII
[China]
[31]

ResNet3D101 [26] 325.21

Manual

85.54 89.62 77.15 82.92
DenseNet3D121 [5] 43.06 87.02 88.97 82.78 85.76

MC3 18 [26] 43.84 86.16 87.11 82.78 84.89
COVID-AL [28] - 86.60 - - -

VGG16-Ensemble [16] - 88.12 84.04 89.19 86.54
CovidNet3D-S [8] 11.48

Auto

88.55 88.78 91.72 90.23
CovidNet3D-L [8] 53.26 88.69 90.48 88.08 89.26
MNas3DNet [9] 22.91 87.14 88.44 86.09 87.25
EMARS-A 5.93 89.67 89.26 89.22 89.23
EMARS-P 5.63 88.78 88.81 88.22 88.51

EMARS-APS 3.38 89.61 91.48 89.97 90.72

Mos-
Med

[Russia]
[20]

ResNet3D101 [26] 325.21

Manual

81.82 81.31 97.25 88.57
DenseNet3D121 [5] 43.06 79.55 84.23 92.16 88.01

MC3 18 [26] 43.84 80.4 79.43 98.43 87.92
DeCoVNet [27] - 82.43 - - -

CovidNet3D-S [8] 12.48

Auto

81.17 78.82 99.22 87.85
CovidNet3D-L [8] 60.39 82.29 79.50 98.82 88.11

EMARS-A 2.89 80.98 77.91 99.61 87.44
EMARS-P 18.22 84.34 93.56 85.49 89.34

EMARS-APS 10.69 88.09 93.52 90.59 92.03

Covid-
CTset
[Iran]
[22]

ResNet3D101 [26] 325.21

Manual

93.87 92.34 95.54 93.92
DenseNet3D121 [5] 43.06 91.91 92.57 92.57 92.57

MC3 18 [26] 43.84 92.57 90.95 94.55 92.72
CovCTx [3] - 96.37 - 97.00 -

Vit-32×32 [25] - 95.36 - 83.00 -
CovidNet3D-S [8] 8.36

Auto

94.27 92.68 90.48 91.57
CovidNet3D-L [8] 62.82 96.88 97.50 92.86 95.12

AutoGluon model [1] 93.00 89.00 90.00 88.00 88.00
EMARS-A 8.36 95.16 95.77 95.16 95.46
EMARS-P 14.41 92.87 92.73 92.74 92.74

EMARS-APS 9.95 97.66 97.61 97.58 97.59

5 Conclusion and Future Work

In this work, we introduce an EA-based neural architecture search (EMARS)
framework, which can efficiently discover superior 3D models under multiple ob-
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jectives for COVID-19 3D CT classification. We demonstrate that our proposed
objective, i.e., potential, can effectively alleviate the search instability and help
exploit promising models. The models searched by EMARS under accuracy and
potential objectives have small sizes and outperform the previous work on three
public datasets. We believe our framework can also be extended to other types
of datasets and tasks (e.g., segmentation), which is also our future work.
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