Skip to main content

Ensembled Prediction of Rheumatic Heart Disease from Ungated Doppler Echocardiography Acquired in Low-Resource Settings

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Rheumatic heart disease (RHD) is a common medical condition in children in which acute rheumatic fever causes permanent damage to the heart valves, thus impairing the heart’s ability to pump blood. Doppler echocardiography is a popular diagnostic tool used in the detection of RHD. However, the execution of this assessment requires the work of skilled physicians, which poses a problem of accessibility, especially in low-income countries with limited access to clinical experts. This paper presents a novel, automated, deep learning-based method to detect RHD using color Doppler echocardiography clips. We first homogenize the analysis of ungated echocardiograms by identifying two acquisition views (parasternal and apical), followed by extracting the left atrium regions during ventricular systole. Then, we apply a model ensemble of multi-view 3D convolutional neural networks and a multi-view Transformer to detect RHD. This model allows our analysis to benefit from the inclusion of spatiotemporal information and uses an attention mechanism to identify the relevant temporal frames for RHD detection, thus improving the ability to accurately detect RHD. The performance of this method was assessed using 2,136 color Doppler echocardiography clips acquired at the point of care of 591 children in low-resource settings, showing an average accuracy of 0.78, sensitivity of 0.81, and specificity of 0.74. These results are similar to RHD detection conducted by expert clinicians and superior to the state-of-the-art approach. Our novel model thus has the potential to improve RHD detection in patients with limited access to clinical experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marijon, E., Mirabel, M., Celermajer, D.S., Jouven, X.: Rheumatic heart disease. Lancet 379(9819), 953–964 (2012). https://doi.org/10.1016/S0140-6736(11)61171-9

    Article  Google Scholar 

  2. Liu, M., Lu, L., Sun, R., Zheng, Y., Zhang, P.: Rheumatic heart disease: Causes, symptoms, and treatments. Cell Biochem. Biophys. 72(3), 861–863 (2015). https://doi.org/10.1007/s12013-015-0552-5

    Article  Google Scholar 

  3. Reményi, B., et al.: World heart federation criteria for echocardiographic diagnosis of rheumatic heart disease–an evidence-based guideline. Nat. Rev. Cardiol. 9(5), 297–309 (2012). https://doi.org/10.1038/nrcardio.2012.7

    Article  Google Scholar 

  4. Beaton, A., et al.: The utility of handheld echocardiography for early rheumatic heart disease diagnosis: a field study. Eur. Hear. J. Cardiovasc. Imaging 16(5), 475–482 (2015). https://doi.org/10.1093/ehjci/jeu296

    Article  Google Scholar 

  5. Scheel, A., et al.: The inter-rater reliability and individual reviewer performance of the 2012 world heart federation guidelines for the echocardiographic diagnosis of latent rheumatic heart disease. Int. J. Cardiol. 328, 146–151 (2021). https://doi.org/10.1016/j.ijcard.2020.11.013

    Article  Google Scholar 

  6. Mirabel, M., et al.: Screening for rheumatic heart disease: Evaluation of a focused cardiac ultrasound approach. Circ. Cardiovasc. Imaging 8(1), 1–8 (2015). https://doi.org/10.1161/CIRCIMAGING.114.002324

    Article  MathSciNet  Google Scholar 

  7. Nunes, M.C.P., et al.: Simplified echocardiography screening criteria for diagnosing and predicting progression of latent rheumatic heart disease. Circ. Cardiovasc. Imaging 12(2), 1–13 (2019). https://doi.org/10.1161/CIRCIMAGING.118.007928

    Article  MathSciNet  Google Scholar 

  8. Diamantino, A., et al.: A focussed single-view hand-held echocardiography protocol for the detection of rheumatic heart disease. Cardiol. Young 28(1), 108–117 (2018). https://doi.org/10.1017/S1047951117001676

    Article  Google Scholar 

  9. Balodi, A., Anand, R.S., Dewal, M.L., Rawat, A.: Computer-aided classification of the mitral regurgitation using multiresolution local binary pattern. Neural Comput. Appl. 32(7), 2205–2215 (2019). https://doi.org/10.1007/s00521-018-3935-x

    Article  Google Scholar 

  10. Moghaddasi, H., Nourian, S.: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput. Biol. Med. 73, 47–55 (2016). https://doi.org/10.1016/j.compbiomed.2016.03.026

    Article  Google Scholar 

  11. Asmare, M.H., Filtjens, B., Woldehanna, F., Janssens, L., Vanrumste, B.: Rheumatic heart disease screening based on phonocardiogram. Sensors (Basel) 21(19), 1–17 (2021). https://doi.org/10.3390/s21196558

    Article  Google Scholar 

  12. Asmare, M.H., Woldehanna, F., Janssens, L., Vanrumste, B.: Rheumatic heart disease detection using deep learning from spectro-temporal representation of un-segmented heart sounds. In: Proceedings of the Annual International Engineering in Medicine and Biology Society, pp. 168–71. IEEE, Montreal, QC, Canada (2020). https://doi.org/10.1109/EMBC44109.2020.9176544

  13. Godown, J., et al.: Handheld echocardiography versus auscultation for detection of rheumatic heart disease. Pediatrics 135(4), e939–e944 (2015). https://doi.org/10.1542/PEDS.2014-2774

    Article  Google Scholar 

  14. Zamzmi, G., Hsu, L.Y., Li, W., Sachdev, V., Antani, S.: Harnessing machine intelligence in automatic echocardiogram analysis: Current status, limitations, and future directions. IEEE Rev. Biomed. Eng. 14, 181–203 (2020). https://doi.org/10.1109/RBME.2020.2988295

    Article  Google Scholar 

  15. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit. Med. 1(6), 1–8 (2018). https://doi.org/10.1038/s41746-017-0013-1

    Article  Google Scholar 

  16. Kusunose, K., Haga, A., Inoue, M., Fukuda, D., Yamada, H., Sata, M.: Clinically feasible and accurate view classification of echocardiographic images using deep learning. Biomolecules 10(5), 1–8 (2020). https://doi.org/10.3390/biom10050665

    Article  Google Scholar 

  17. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7(25), 1–33 (2020). https://doi.org/10.3389/fcvm.2020.00025

    Article  Google Scholar 

  18. Ghorbani, A., et al.: Deep learning interpretation of echocardiograms. NPJ Digit. Med. 3(10), 1–10 (2020). https://doi.org/10.1038/s41746-019-0216-8

    Article  Google Scholar 

  19. Martins, J.F.B.S., et al.: Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning. J. Am. Med. Informatics Assoc. 28(9), 1834–1842 (2021). https://doi.org/10.1093/JAMIA/OCAB061

    Article  Google Scholar 

  20. Seeland, M., Mäder, P.: Multi-view classification with convolutional neural networks. PLoS ONE 16(1), 1–17 (2021). https://doi.org/10.1371/journal.pone.0245230

    Article  Google Scholar 

  21. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the International Conference on Computer Vision, pp. 1–12. IEEE, Santiago, Chile (2015). https://doi.org/10.48550/arxiv.1505.00880

  22. Chen, S., Yu, T., Li, P.: MVT: Multi-view vision transformer for 3D object recognition. In: Proceedings of the 32nd British Machine Vision Conference, pp. 1–14. British Machine Vision Association, Online (2021)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference in Neural Information Processing Systems, pp. 1–11. Curran Associates Inc., Long Beach, CA, USA (2017). https://doi.org/10.48550/arxiv.1706.03762

  24. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: A survey. ACM Comput. Surv., 1–38 (2021). https://doi.org/10.1145/3505244

  25. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 248–55. IEEE, Miami, Florida, USA (2009). https://doi.org/10.1109/CVPR.2009.5206848

  26. Chaurasia, A., Culurciello, E.: LinkNet: Exploiting encoder representations for efficient semantic segmentation. In: Proceedings of the Visual Communications and Image Processing, pp. 1–5. IEEE, St. Petersburg, FL, USA (2017). https://doi.org/10.1109/VCIP.2017.8305148

  27. Yakubovskiy, P.: Segmentation models. GitHub repository. GitHub (2019). https://github.com/qubvel/segmentation_models. Accessed 30 Jun 2022

  28. Roshanitabrizi, P., et al.: Standardized analysis of kidney ultrasound images for the prediction of pediatric hydronephrosis severity. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 366–375. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_38

    Chapter  Google Scholar 

  29. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv: Learning, 1–9 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooneh Roshanitabrizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roshanitabrizi, P. et al. (2022). Ensembled Prediction of Rheumatic Heart Disease from Ungated Doppler Echocardiography Acquired in Low-Resource Settings. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics