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Abstract. Attention mechanisms are widely used to dramatically im-
prove deep learning model performance in various fields. However, their
general ability to improve the performance of physiological signal deep
learning model is immature. In this study, we experimentally analyze four
attention mechanisms (e.g., squeeze-and-excitation, non-local, convolu-
tional block attention module, and multi-head self-attention) and three
convolutional neural network (CNN) architectures (e.g., VGG, ResNet,
and Inception) for two representative physiological signal prediction tasks:
the classification for predicting hypotension and the regression for pre-
dicting cardiac output (CO). We evaluated multiple combinations for
performance and convergence of physiological signal deep learning model.
Accordingly, the CNN models with the spatial attention mechanism
showed the best performance in the classification problem, whereas the
channel attention mechanism achieved the lowest error in the regression
problem. Moreover, the performance and convergence of the CNN models
with attention mechanisms were better than stand-alone self-attention
models in both problems. Hence, we verified that convolutional operation
and attention mechanisms are complementary and provide faster conver-
gence time, despite the stand-alone self-attention models requiring fewer
parameters.

Keywords: Physiological signal · Attention · Deep learning.

1 Introduction

Deep learning has dramatically improved the predictability of various phenom-
ena based on input data of past events. For natural language processing, recur-
rent neural networks (RNNs) are particularly effective in analyzing time-series
sequences [2,6,11]. For image processing, convolutional neural networks (CNNs)
that mimic human visual cognitive functions have grown in popularity [10,23,24].
However, both methods have shortcomings, such as the RNN’s vanishing gradi-
ent and information loss problems [21], which limits performance, and the CNN’s
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locality of pixel dependency [15], which make it goes deeper. To overcome these
roadblocks, attention mechanisms have been used to enable neural models to pay
closer attention to the most important parts of the data while ignoring irrelevant
parts [7]. It gives higher weight to parts that are more relevant to produce out-
put, and lower weights to parts that are not. Bahadnau et al. [1] introduced this
idea to machine translation, resulting in superior performance over canonical
RNNs. Similar concept of attention mechanism was also introduced, e.g., Luong
et al. [18], and the other types of attention mechanisms were also proffered which
tailored to computer vision applications [12,26,27].

In recent days, self-attention-based mechanisms had been replaced the canon-
ical deep learning architectures and are positioned as a mainstream of AI re-
search. Vaswani et al. [25] proposed a deep learning model that skipped the
RNN and applied a self-attention mechanism by itself (so-called Transformer),
achieving superior performance in machine translation and document genera-
tion. Dosoviskiy et al. [3] proposed a vision transformer, which a variant of the
Transformer for image classification tasks, outperforming canonical CNNs with
substantially fewer computations. Subsequently, self-attention-based deep learn-
ing was used to predict protein structures [14], compiler graph optimizers [30],
and audio generation methods [13].

Consequently, the application of deep learning to physiological signal analysis
has been considered [4]. For example, Hannun et al. [8] built a CNN that detects
arrhythmia from electrocardiogram (ECG), showing human expert-level perfor-
mance. As in other domains, attention mechanisms have been used to improve
performance in physiological signal analysis. Mousavi et al. [22] proposed an
attention-based CNN+RNN network to predict sleep stages from single-channel
electroencephalogram. Yang et al. [28] built a CNN with attention blocks to
predict stroke volume from arterial blood-pressure waveform. Unfortunately, all
of these methods were tuned for specific signal types or tasks, and the best at-
tention mechanisms for general field use for physiological signal analysis was not
determined.

In this study, we experimentally determine which CNN architectures and at-
tention mechanisms are the best for analyzing physiological signals. We focus on
attention mechanisms used in computer vision, as the various features of physi-
ological signal processes are similar, and the challenges of accurately predicting
and classifying the presence of signal and object anomalies are closely related.
Hence, we considered the three types of CNN models which popular for image
processing and four types of attention mechanisms which suggested for computer
vision tasks. Notably, a physiological signal generally has a smaller dimension
than does an image, and the attention mechanism designed for computer vision
may reduce efficiency by adding unnecessary calculations. Additionally, in a com-
puter vision problem, discriminating feature detection is the main task, whereas
in physiological signal analysis, not only is detecting discriminating features
important, but detecting signal trends is also crucial. Therefore, for effective
and efficient use of attention mechanisms, it is necessary to analyze how each
attention mechanisms affects physiological signal analysis. To the best of our
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knowledge, this study is the first attempt to identify the most effective attention
mechanism for physiological signal analysis using deep learning. We believe that
our work will enable generalizable physiological signal deep learning, including
the development of prototypes.

2 Methods

In this study, we analyze the efficacy of three CNN architectures (e.g., VGG-
16 [23], ResNet-18 [10], and Inception-V1 [24]) with four types of attention mech-
anisms (e.g., squeeze-and-excitation (SE) [12], non-local (NL) [26], convolutional
block attention module (CBAM) [27], and multi-head self-attention (MSA) [25])
for physiological signal deep learning. Each model uses unique feature extraction
modules. VGG module includes two or three consecutive convolution layers and
a pooling layer. ResNet module contains two consecutive convolution layers and
a residual path. Inception module includes three convolution layers and a pool-
ing layer in parallel. The CNN models used in this study are tailored to modality
and dimension differences between image and physiological signal data. Detailed
reduction criteria are described in Appendix.

The SE module is a channel attention mechanism. It encodes features with
a squeeze part and decodes it with an excitation part to increase the quality
of feature representation by considering the interdependency of channel infor-
mation. The NL module is a spatial attention mechanism that calculates global
feature information with covariance-like self-attention, which can overcome the
locality of pixel dependency of CNN model, in which they fail to extract rela-
tional features between the first and last points of the input segment. CBAM
is a channel + spatial attention mechanism. It performs channel-wise attention
which is similar to SE module and performs spatial attention mechanism in that
it sequentially reduces the feature size using multiple pooling and convolutional
layers. The MSA module [25] is a stand-alone spatial self-attention method com-
prising multiple scaled dot-product attention layers in parallel, which use input
data itself for queries, keys, and values. It analyzes how the given input data are
self-related and helps extract enriched feature representations. The first three
attention modules are harmonized to CNN models, but MSA does not use in-
termediate convolutional layers. A total of 13 types deep learning models (i.e.,
three pure CNN-based models, nine attention involved CNN-based models, and
an MSA-based model) are compared.

Each model is trained to solve two representative physiological signal prob-
lems: classification for predicting intraoperative hypotension and regression for
predicting intraoperative cardiac output (CO). Unexpected hypotension is a
critical event that requires prompt intervention. Many risk factors have been
revealed, but they do not help reduce its incidence or duration. Therefore, early
prediction and prevention are crucial. Several studies have attempted to predict
hypotension using deep learning [9,17]. We followed their methods of predicting
hypotension events within 5 min of occurrence.
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ECG, plethysmography (PPG), and demographic data were used as input
variables for classification task. The output variable was binary, the positive label
was defined as hypotension (mean arterial blood pressure≤65 mmHg) lasting>1
min, and the negative label for otherwise. A pair of 20-s input segments of ECG
and PPG waveforms and demographic data were extracted to predict events
within 5-min. For preprocessing, we removed segments with ECG outside a range
of −2 to 4.5mV or a PPG range of zero (unitless) or less.

CO, the volume of blood being pumped by the heart per minute, is used
to monitor and optimize systemic oxygen and drug delivery in critically ill or
high-risk surgical patients. Especially for surgical patients, it is directly related
to postoperative complications; hence, immediate treatment to keep CO levels
between 4 and 8L/min during surgery may improve patient outcomes [5]. How-
ever, accurate CO monitoring requires invasive catheters, which may lead to
severe complications. Some previous deep learning works attempted to predict
CO using the data of invasive medical devices [19,28,29]. However, we sought a
non-invasive method. Our model allows us to monitor CO for general patients
by eliminating the invasiveness.

The input variables of the regression task were the same as those of the
hypotension prediction model. The output variable was stroke volume index
(SVI) instead of CO so that we could return a prompt result and correct the
interpatient biases. Note that SVI = CO/(heart rate (HR)×body surface area).
To remove outliers, only values with CO / HR between 20 and 200mL/beat
were used. The 20-s segments of input were extracted to predict immediate SVI
values. Preprocessing for input segments was the same as the classification task.

3 Experiments

Training and testing datasets were obtained from VitalDB [16], an open-source
physiological signal database containing perioperative physiological signs of more
than 6,000 surgical patients. We extracted the required tracks for each task
and conducted minimal preprocessing to determine CNN models and attention
mechanisms having the best model effects using real-world physiological signal
data.

To measure the effectiveness of the three attention mechanisms in each CNN
model, performance variations were recorded by changing the attention fraction
of the attention mechanism. Attention fraction is defined as the number of at-
tention mechanisms divided by the number of CNN modules times 100. The 0,
50, and 100% attention fractions were considered in our experiments. Each at-
tention mechanism was applied as the end-stage of each module. Note that for
a 50% attention fraction, one attention mechanism was embedded in every two
CNN modules. Notably, the MSA-based model did not include a convolutional
module and do not have a standardized architecture; hence, we explored various
MSA-based model types using a grid search. The search spaces for self-attention
had input and output dimensionalities of 16, 32, and 64, parallel attention lay-
ers (number of heads) of two, four, six, and eight, inner-layer dimensionalities of
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32, 64, and 128, and identical layers (number of layers) of one, two, and three.
Through the hyperparameter search, we fixed other options as to be the best
performance except number of heads and number of layers and recorded per-
formance by changing the unit of number of heads and layers. Note that unit
for number of heads increase by 2 and for number of layers increase by 1. The
best setting of our MSA-based model was input and output dimensionality of
32, inner-layer dimensionality of 128. A single convolutional layer was added to
the input layer of each MSA-based model to match the variable dimensionality
of the self-attention models.

The input data of two tasks were two-channel (ECG and PPG) 100-Hz wave-
forms of 20-s. Patient demographic information was concatenated after the first
fully connected layer. Detailed model architectures are illustrated in Fig 1. It
presents the final baseline model used. The green box (attention module) was
replaced with the module required for each experiment.

(a) VGG-based model (b) ResNet-based model (c) Inception-based model (d) MSA-based model

Fig. 1. The baseline model architectures. The models with 100% attention fraction are
shown. The number in parentheses means filters or neurons. k : kernel size, s: stride.

For classification task, all models were trained with binary cross-entropy loss.
The Adam optimizer was used for all models, apart from the inception-based
one, which used RMSProp. The area under the receiver operating character-
istics curve (AU-ROC) was used to evaluate the classification model. For the
regression task, all models were trained with root mean squared error loss and
the Adam optimizer. The mean absolute percentage error (MAPE) was calcu-
lated to measure model performance. Both classification and regression models
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were generated with a learning rate of 0.001 set to decrease by 0.1 times every
20 epochs. A batch size of 128 was used. To derive more reliable results, all mod-
els were repeated five times for training, and their performances were compared
based on mean and standard deviation. We also measured the elapsed times of
model convergence at given performances. The elapsed times to reach 0.7 AU-
ROC for classification and 27.0% of MAPE for regression task were considered.
All experiments, apart from those of the MSA-based models, were performed
using Tensorflow 2.4.1 with Python 3.9 on a 32-core AMD EPYC 7542 proces-
sor and a single NVIDIA RTX 5000 GPU. For self-attention models, we used
two NVIDIA RTX 5000 GPUs with NVLink connections to supplement GPU
memory.

4 Results

Totals of 3,211 and 801 cases were extracted for hypotension and CO prediction,
respectively. A randomly sampled 20% of cases were used for testing. For the
hypotension prediction problem, 289,775 and 74,779 samples containing 4.74 and
4.03% positive events were collected for training and testing, respectively. The
CO prediction problem collected 271,288 and 64,659 samples, providing a mean
SVI and a standard deviation of 42.11±13.25 and 41.71±12.37, respectively,
for training and testing. Patient demographic information was not different (P -
value > 0.05) between training and testing, except that the weight and height
of patients in the hypotension testing were slightly larger (Table 1).

Table 1. Patient demographics of training and testing datasets

Hypotension prediction (Classification)

Characteristic Training dataset Testing dataset P-value

Age, years† 61.0 (49.0-69.8) 60.0 (52.0-70.0) 0.258
Sex, # of male (%) 1409 (54.8%) 368 (57.3%) 0.278

Height, cm† 162.6 (156.3-168.7) 163.4 (157.2-170.0) 0.040

Weight, kg† 60.0 (53.4-68.6) 61.3 (53.0-68.3) 0.030

Cardiac output prediction (Regression)

Characteristic Training dataset Testing dataset P-value

Age, years† 61.0 (52.0-70.0) 62.0 (50.0-69.0) 0.660
Sex, # of male (%) 394 (61.3%) 90 (57.0%) 0.367

Height, cm† 163.8 (157.8-169.8) 162.3 (155.4-169.2) 0.178

Weight, kg† 61.5 (54.2-69.5) 61.1 (53.7-68.0) 0.478

† Data are represented as median (interquartile range).

The model performance variances of each CNN model and attention mecha-
nism are illustrated in Fig 2 and 3. Regarding the classification task for predict-
ing hypotension of Fig 2, ResNet-based model showed overall higher performance
with a 50% attention fraction. ResNet-based model with NL module showed the
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Fig. 2. Performance and convergence time in hypotension prediction problem. (a) is
comparison of AU-ROC in the classification task. (b) is comparison of elapsed time to
converge AU-ROC = 0.7
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Fig. 3. Performance and convergence time in CO prediction problem. (a) is comparison
of MAPE in the regression task. (b) is comparison of elapsed time to converge MAPE
= 27.0%
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best AU-ROC of 0.854. When examining the elapsed time needed to converge
0.7 of the AU-ROC, ResNet-based model was the fastest. Additionally, the SE
module added negligible additional computing overhead, but the overall CNN
performance increased. There was an obvious tendency of increased performance
when using spatial attention (i.e., NL or CBAM module).

During CO regression prediction, as shown in Fig 3, the VGG-based model
showed an overall low error. The VGG-based model with a 50% attention fraction
of the CBAM module showed the best MAPE of 17.3%. However, ResNet-based
model had the best convergence time to achieve 27.0% of MAPE. The computa-
tional overhead of the SE module in the three CNN models was also negligible in
the regression problem, whereas it played a major role in reducing errors. More-
over, the convergence time was shortened in the ResNet-based model with SE
module. There was also a clear tendency of decreasing error when using channel
attention mechanisms (i.e., SE or CBAM module).

These experimental results can be better understood when contrasted with
the problem defined. To predict hypotension within 5 min of occurrence, the
most important feature is hemodynamic flow changes across 20-s of input data.
Therefore, spatial attention plays an important role in model performance. In
the prompt-CO regression problem, the waveform shape from a single beat was
most important as CO is closely related to heart dynamics and the elasticity
or compensation of blood vessels. Notably, each patient has a different beat
pattern. Therefore, it is crucial to properly analyze the shape of the beat wave-
form. Channel attention extracts various features from the input and improves
performance by helping diversify feature representations.

In both problems, the model performance was generally better when using
50% of the attention fraction rather than 100% or the fully self-attention-based
model. Similar results were reported for computer vision problems [20]. We con-
firmed that convolution and self-attention were complementary in physiological
signal deep learning, as with computer vision. Furthermore, good performance
cannot be achieved by using only one building block.

5 Conclusion

In this study, we determined the best CNN and attention mechanism pairing
for building deep learning models for physiological signal analysis. An atten-
tion mechanism should be selected by determining which characteristics from
the raw physiological signal should be addressed to solve the problem. Convo-
lution and attention mechanisms are complementary; therefore, there may be
an ideal attention fraction for optimal performance. The ResNet-based model
showed moderate performance and fast convergence in both experimental tasks.
Therefore, ResNet-based model with an attention mechanism is the best candi-
date for prototype model. Recent studies suggest using a combined MSA with
CNN for higher performance. We plan to compare physiological signal analysis
performance using multiple models in a future paper.
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A Appendix

The original CNN models (e.g., VGG-16, ResNet-18, and Inception-V1) used
224 × 224 image inputs and analyzed them with two-dimensional (2D) convo-
lutions. However, in our research, the dimensionality of input data should be
one-dimensional (1D). Therefore, all 2D convolutional operations were replaced
with 1D convolutions. Additionally, input sizes were much smaller at 224 × 224
= 50,176 vs. 2,000. We thus reduced the model depth to prevent overfitting
caused by superfluous immoderate trainable parameters. Let our input data size
of 2,000 to be 2D. 2,000 ≈ 45 × 45. Thus, the ratio between image data used in
the original CNN studies and our physiological data was 224 / 45 ≈ 5. There-
fore, we used the model reduction ratio of five for each CNN model. The main
characteristics of CNN models was the modules they contained. The VGG mod-
ule included two or three consecutive convolution layers and a pooling layer.
The ResNet module contained two consecutive convolution layers and a resid-
ual path. The inception module included three convolution layers and a pooling
layer in parallel. To maintain each model’s identity, we set cutoff criteria while
preserving the modules. Fig A1 illustrates the shallow part of each CNN model.

(c) Level of Inception-V1(b) Level of ResNet-18(a) Level of VGG-16
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Fig. A1. Example of the levels of each model

Note that the level indicates a section divided while maintaining the module’s
property. To find the optimal subset of the CNN model for our study, we com-
pared the number of training parameters by dividing the model by levels. The
fully connected part (the classification or regression part) of the original model
was added to the subset model. Additional concatenating layers for patient de-
mographic data were added in the last fully connected part. Table A1 presents
the number of trainable parameters divided by the level of each model. ResNet
and Inception models showed fewer trainable parameters as they were divided
at shallow levels, whereas VGG showed more parameter increases owing to the
growth of feature sizes entering the fully connected layer without global-average
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Table A1. Trainable parameters for each level of each model

Level
VGG-based model
Trainable param.

ResNet-based model
Trainable param.

Inception-based model
Trainable param.

1 192,128,065 26,048 117,744
2 189,891,329 51,008 297,584
3 130,614,785 134,080 538,592
4 90,639,361 233,152 806,504
5 40,567,296 563,136 1,089,280
6 - 957,888 1,404,864
7 - 2,273,216 1,884,096
8 - 3,849,152 2,538,432

Default
param.

40,567,296 3,849,152 3,417,264

Default/5
param.

8,133,459 769,830 683,453

pooling. We selected a VGG five levels (full model), a ResNet six levels, and an
inception with four levels as our baseline CNN architecture.
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