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Abstract. Coronary CT Angiography (CCTA) is susceptible to var-
ious distortions (e.g., artifacts and noise), which severely compromise
the exact diagnosis of cardiovascular diseases. The appropriate CCTA
Vessel-level Image Quality Assessment (CCTA VIQA) algorithm can
be used to reduce the risk of error diagnosis. The primary challenges
of CCTA VIQA are that the local part of coronary that determines
final quality is hard to locate. To tackle the challenge, we formulate
CCTA VIQA as a multiple-instance learning (MIL) problem, and exploit
Transformer-based MIL backbone (termed as T-MIL) to aggregate the
multiple instances along the coronary centerline into the final quality.
However, not all instances are informative for final quality. There are
some quality-irrelevant/negative instances intervening the exact qual-
ity assessment(e.g., instances covering only background or the coronary
in instances is not identifiable). Therefore, we propose a Progressive
Reinforcement learning based Instance Discarding module (termed as
PRID) to progressively remove quality-irrelevant/negative instances for
CCTA VIQA. Based on the above two modules, we propose a Reinforced
Transformer Network (RTN) for automatic CCTA VIQA based on end-
to-end optimization. Extensive experimental results demonstrate that
our proposed method achieves the state-of-the-art performance on the
real-world CCTA dataset, exceeding previous MIL methods by a large
margin.

Keywords: Image Quality Assessment · CCTA · Reinforced Learning ·
Transformer.

1 Introduction

Coronary Computed Tomography Angiography (CCTA) technique plays an in-
dispensable role in the diagnosis of cardiovascular diseases for providing vital
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visual clues. However, the CCTA images are easily degraded by various factors
(i.e., patient breathing motion artifacts and insufficient contrast agent dose) and
contain hybrid distortions [11,14], which inevitably affects the subsequent anal-
ysis of expert doctors [5]. For example, when artifacts appear in the coronary
artery stenosis, it is difficult for doctors to distinguish whether the vessel is steno-
sis or not [8]. To ensure accurate diagnosis, it is necessary to provide doctors
with high-quality CCTA images. Therefore, there is an urgent need to develop
CCTA Vessel-level Image Quality Assessment (CCTA VIQA) algorithms that
can be used to automatically quantify the perceptual image quality of CCTA.

With the rapid development of machine learning, the seminal work [19]
maps hand-crafted global and local features (i.e., noise, contrast, misregistra-
tion scores, and un-interpretability index) of coronary artery onto image quality
scores through machine learning algorithms. However, its input features are not
rich since they only include four types of image characteristics, which always
causes the sub-optimal performance and lacks of enough flexibility. Also, quality
metric [13,15] designed for natural image are not suitable for medical image.
During the dataset annotation process, the professional doctors only provide
the vessel-level label when browsing the complete CT. So no position labels are
provided for quality relevant regions and the key local parts that determine the
vessel-level quality are hard to locate, which shows CCTA VIQA is an obvious
weakly-supervised problem [25]. So the quality relationship between various local
parts of coronary artery in CCTA image can be excavated by modeling CCTA
VIQA as a MIL problem. Therefore, we propose Transformer-based MIL back-
bone (T-MIL) in CCTA VIQA. Specifically, since the quality of CCTA images
is only associated with the coronary artery, we utilize the centerline tracking
algorithm [22] to detect the regions of coronary artery. Then we define 3D cubes
cropped along the coronary centerline as instances. Finally, the discriminative
features from multiple instances extracted by 3D convolutional neural networks
are aggregated into the quality space through the latest network architecture,
i.e., transformer. Recently, there are various MIL aggregators in MIL methods,
like attention [6,16,10], RNN [2], sparse convolution [9], and graph [24]. Spe-
cially, transformer-based MIL frameworks [7,18,20,23] have achieved remarkable
success in a broad of medical tasks, such as whole slide image classification.

Although the instances (i.e., cubes) have covered all possible quality-associated
contents, the quality-irrelevant contents also infiltrate the instances severely,
which is detrimental for the estimation of overall quality. For instance, the
quality-related cubes only take a small proportion of all cubes. According to
our observation, there are three typical cases of quality-irrelevant instances i.e.,
the instance that does not match the vessel-level label, the coronary in instances
is not identifiable, and the instance contains only background. To remove these
negative instances while mining the most informative instances, we propose a
Progressive Reinforcement learning based Instance Discarding module (termed
as PRID) to preserve informative instances as the inputs of the transformer.
The reinforcement learning (RL) agent from PRID accepts the output feature
embedding of transformer as states, and selects one instance to discard. Then we
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input the new instance set into T-MIL to obtain the states (both in training and
testing) for the next iteration and the reward (just for training) to refine cur-
rent action. We call the T-MIL together with PRID as Reinforced Transformer
Network, which is denoted as RTN.

We summarize our contributions as follows.

– To our knowledge, we propose the first fully automatic CCTA VIQA al-
gorithm RTN based on end to end optimization. We formulate the CCTA
VIQA as the typical MIL problem, and introduce transformer to aggregate
multiple instances and map them to final quality.

– To elide the intervention from quality-irrelevant/negative isntances, we pro-
pose a progressive reinforced learning based instance discarding strategy (i.e.,
PRID) to mine the most informative instances for transformer network.

– Extensive experimental results reveal that our proposed RTN achieves the
SOTA performance on hospital-built CCTA dataset, exceeding previous MIL
methods by a large margin.

Fig. 1. The architecture of RTN, consisting of two basic components: (a) Progressive
Reinforcement Learning based Instance Discarding (PRID) and (b) Transformer-based
MIL Backbone (T-MIL).

2 Methods

Fig. 1 depicts the overall framework of RTN for the CCTA VIQA task, which
is composed of two basic components i.e., Progressive Reinforcement Learning
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based Instance Discarding (PRID) and Transformer-based MIL backbone (T-
MIL). Given one CCTA image, we first collect the cubes cropped along the
coronary centerline as instances. Then PRID module employs a reinforcement
learning (RL) agent to determine which instance should be discarded progres-
sively. After obtaining the most informative instances, T-MIL is devoted to clas-
sifying the final quality grade in vessel-level. In the following sections, we will
clarify the T-MIL and PRID of our RTN from both implementation and principal
perspectives.

2.1 Transformer-based MIL

MIL is a strong tool to solve weakly-supervised problem. In the definition of
MIL, a set of multiple instances can be regarded as a bag and only bag-level
label is provided. In the situation of CCTA VIQA, the vessel-level quality is only
determined by partial local regions of coronary arteries. However, the positions
of these local regions cannot be located, which is a weakly-supervised question
and consistent with MIL setting. Therefore, in our method, we define the ith 3D
cube sampled on the centerline of the coronary artery as an instance xi, and the
whole coronary artery region is taken as a bag B = {xi|1 ≤ i ≤ n}. Then the
perceptual quality y of whole coronary B can be inferred with Eq. 1.

y(B) = h(f(x1), f(x2), ..., f(xi), ..., f(xn)), 1 ≤ i ≤ n. (1)

Where, xi ∈ RC1×D×H×W is the ith instance in the same bag B. T-MIL contains
f(.) and h(.), which are separately as instance feature extractor and transformer-
based aggregator. In this paper, the instance feature extractor f is composed of
several 3D convolution based residual blocks [3] and flatten operation.

Transformer-based Aggregator. To capture the long-range dependency be-
tween different instances, we employ the transformer architecture in ViT [4] as
the aggregator of MIL. As shown in Figure 1, each transformer encoder layer is
consist of multi-head self-attention (MHSA) layer and feed-forward (FF) layer.
We follows the ViT [4] and add the quality token c0(B) to the instance token
groups. The input token embeddings can be written as:

Z0 = [c0(B), f(x1), f(x2), ..., f(xi), ..., f(xn)], 1 ≤ i ≤ n. (2)

In MHSA, we firstly transform instance embedding to key K, query Q and
value V , and then calculate the similarity of key and query as attention weight
matrix. The matrix’s each item means dependencies between any pair of in-
stances. The output of MHSA contains aggregation information, especially qual-
ity token embedding that aggregates the contribution of each instance to final
vessel-level quality prediction.The full process of the lth transformer layer is as
follows, in which LN is layernorm and MLP includes two fully-connected layers
with a GELU non-linearity:

Z
′

l = MHSA(LN(Zl−1)), l = 1, 2, ...L

Zl = MLP (LN(Z
′

l )) + Z
′

l , l = 1, 2...L
(3)
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After feeding input token embedding into L transformer layers, we can obtain
the output token embedding ZL ∈ R(n+1)×D, in which D is the dimension of the
token embedding. The first quality token embedding cL(B) = ZL[0] is used to
quality classification and following instance embedding YL = ZL[1 : n] can be
used as the states of PRID.

Fig. 2. The agent network of PRID, contains common Pooling by Multi-Head Atten-
tion(PMA) module and various MLP layers.

2.2 PRID

To reduce the intervention of negative instances (e.g., the instance that do not
match vessel-level labels or the instance contains only background), we propose
to utilize reinforcement learning (RL) agent to adaptively identify them and dis-
card them progressively [21]. Specifically, we model the process of progressively
instance discarding as a Markov Decision Process (MDP) [1,12] and introduce
a RL agent to obtain the optimal solution for it. The state, action, reward and
agent in RL are clarified clearly as follows.

States. As shown in Fig. 2, in the tth iteration, the state St is defined as the
output instance embedding YL(t − 1) ∈ R(n−t+1)×D of the (t − 1)th iteration’s
transformer layer, since the features captured by transformer are more represen-
tative for quality prediction.

Action. Action is the instance index that is discarded within the scope of the
instance set. In the t-th iteration, the action search space A = {1, 2, ..k, ..., n−t+
1} is the current instances’ index list. The agent’s output probability vector Pt ∈
Rn−t+1can be regarded as the selected distribution of current instance set. Thus
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we can encode action as multinomial distribution sampling when training and top
one sampling when testing, the selected k is equal to action: k = sample(Pt). The
state S transforms to S

′
through the action because of changes in the instance

set: {xi}n−t+1
i=1 −→ {xi}n−t+1

i=1,i6=k.

Reward. The reward R need to reflect the effect of transforming from the state
S to S

′
due to the action. According to the action, we feed a new instance set

into the pre-trained T-MIL and compare the new prediction result with the label
to calculate the reward (t > 1):

Rt =


2, if yt = label and yt−1 = label

1, if yt = label and yt−1 6= label

−1, if yt 6= label and yt−1 = label

−2, if yt 6= label and yt−1 6= label

(4)

In the first selection, the predict result y1 need to compare with label. If the
prediction is correct, give a positive reward (+1), otherwise give a negative re-
ward (−1). In the next choice, as the Eq. 4 shown, the value of reward is not
only related to the accuracy of the current selection’s prediction result, but also
to the last selection’s result. This is because in the MDP problem, the current
selection (iteration) is related to the last selection (iteration).

Agent. As shown in Fig. 2, the agent in PRID receives the states from T-
MIL. We first aggregate the n tokens of states into one token through PMA
module PMA(.) [7]. In the tth iteration, this module sets a learnable embedding
I ∈ R1×D as a query, and directly regards the instance embedding YL(t − 1) ∈
R(n−t+1)×D as key and value to calculate a attention matrix of 1 × (n − t + 1)
dimension to gather these feature embedding. Similarly, the cross attention here
is also implemented in the form of multi-head. Then we feed the fused token into
the MLP head gt(.) to obtain the probability vector Pt ∈ Rn−t+1. Note that in
tth iteration, we will use tth MLP head gt(.):

Pt = gt(PMA(YL(t− 1))) (5)

Instance Discarding Strategy. The implementation of Instance Discarding
Strategy requires above two modules: PRID and T-MIL. In the first stage, we
need to pre-train the T-MIL by randomly selecting n − m instances from n
instances on the centerline. In the second stage, fix the parameters of T-MIL
and update the agent’s parameter through m progressive selections through in-
teraction with T-MIL. At each iteration, we can obtain the selected index (k)
probability from distribution Pt and reward Rt, so the training loss is

loss = −
∑m

t=1
log(Pt[k])×Rt (6)
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Table 1. Performance comparisons with state-of-the-arts on the CCTA dataset.

MIL methods Accuracy AUC
AttentionMIL [6] 0.7574 0.7576
MIL-RNN [2] 0.7322 0.6842
CLAM [16] 0.7761 0.7161
DSMIL [10] 0.6917 0.5378
T-MIL (ours) 0.8036 0.7658

RTN(PRID+T-MIL) (ours) 0.8546 0.8461

3 Experiment

3.1 Implementation Details

Our CCTA VIQA dataset is collected with the help of a partner hospital, where
the vessel-level quality labels of each CCTA image are provided by experienced
imaging doctors. There are two quality levels in our dataset i.e., “1” and “0”.
“1” means the CCTA image is high-quality and accepted by doctors, while “0”
represents the CCTA image is low-quality and cannot be used for diagnosis.
The CCTA VIQA datasets consist of 80 CCTA scans from 40 patients in both
systole and diastole, which can be divided into 210 coronary branches by the
centerline tracking algorithm [22]. Therefore, our datasets contain 210 pairs of
coronary branches and its corresponding vessel-level quality labels, where the
ratio of label “1” and label “0” is 114/96. And we plan to make this CCTA VIQA
dataset public later.

We adopt the numbers of instances (i.e., cubes) n in MIL as 19, which are
uniformly cropped along the centerline of coronary branch. All cubes are with
the size of 20×20×20 and cover whole coronary branch. Considering the dataset
is small, we also augment the data by moving the cube’s center point randomly
to three voxels in any direction along 6 neighborhoods as in [17]. We follow the
5-fold cross validation setting with 80% of data for training and 20% for testing
in each split. Both T-MIL and PRID are implemented with Pytorch and trained
on one NIVDIA 1080Ti GPU. In the training process, we first train T-MIL for
200 epochs with the batchsize 2. Then, we optimize the PRID module for 400
epochs with batchsize 2. We utilize two metrics of quality classification at vessel

Table 2. Performance comparison with different discarding numbers and discarding
strategies in RTN on the CCTA dataset.

Discarding Number PRID(Accuracy/AUC) Random(Accuracy/AUC)
4 0.7964/0.7777 0.7682/0.7409
9 0.8253/0.7674 0.8007/0.7567
14 0.8546/0.8461 0.8107/0.7994

level to measure the effectiveness of the proposed framework: Accuracy and Area
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Under the Curve (AUC) scores. Moreover, the discarding number of instances m
pick 14 as baseline. At the same time, we set 9 and 4 for ablation experiments.

3.2 Comparisons with State-of-the-arts

We compare our methods with the state-of-the-art MIL methods on the CCTA
VIQA datasets, including attention-based MIL [6], RNN-based MIL [2], attention-
based and cluster-based MIL [16], non-local attention based MIL [10]. In order
to ensure fairness, the feature extraction process of the above methods shares the
same two layers of 3D residential blocks. As shown in Table 1, transformer-based
MIL exceeds the second best method CLAM [16] by 2.75%, thanks to its bet-
ter long-range relationship modeling capability. Furthermore, our proposed RTN
achieves the best performance, outperforming previous MIL-based methods by
7.85%, which reveals the effectiveness of our PRID. In other words, discarding
quality-irrelevant instances is vital for CCTA VIQA. See supplementary mate-
rial, the visualization of index distribution of discarded instance and remained
instance shows that only limited instances will play a role in CCTA VIQA.

Fig. 3. Example of instance discarding with label “1”. Three rows represent views in
axial, sagittal, and coronal orientations from all 3D cubes on the coronary artery, among
them, the blue box is the case where the distortion is too serious to judge the coronary
by the network, and the red box is the case with obvious distortion.

3.3 Ablation Study

In this section, we verify the effectiveness of our proposed PRID from four as-
pects: the number of discarding instances, discarding strategy, pooling operations
and cube size. Table 2 shows the comparison results of different discarding num-
bers and different discarding strategies. According the results, the discarding
number m = 14 is the best solution. This is because after iterative discarding,
the five instances with the most information are retained at last, which will make
it easier for network to classify, as shown in Fig. 3. We also compare the PRID
with random discarding strategy in Table 2. Our PRID exceeds random discard-
ing strategy by a large margin regardless of the discarding number, which reveals
the effectiveness of our PRID on instance selection. In Table 3, we compare the
different pooling operations for RL agent in PRID. We can draw a conclusion
that PMA has a stronger aggregation ability to input instance embedding. This
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also shows that it is more explanatory to aggregate tokens through cross atten-
tion [7]. The comparison of different cube size in Table 3 shows that the cubes
with small size cannot cover the whole vessel and the cubes with larger size will
contain a little more quality-unrelated content.

Table 3. Performance comparison with different pooling module in agent network of
RTN on the CCTA dataset and different cube size on one vessel.

Pooling Module Accuracy AUC Crop Size Accuracy AUC
PMA 0.8546 0.8461 15 0.8042 0.7459

Avg Pooling 0.8443 0.8257 20 0.8546 0.8461
Max Pooling 0.8273 0.8198 30 0.8510 0.8668

4 Conclusion

In this paper, we present a novel Reinforced Transformer Network(RTN) model
for CCTA VIQA, which contains two modules: Transformer-based MIL back-
bone (T-MIL) and Progressive Reinforcement learning based Instance Discard-
ing module (PRID). T-MIL can solve the challenge that local part of coronary
that determines final quality is hard to locate. Moreover, PRID can overcome
the intervention from quality-irrelevant/negative instances. Compared with pre-
vious MIL methods, our RTN has achieved great improvement. In the future, we
plan to adaptively select the number of discarded instances, which will continue
to be improved in the follow-up work and put into clinical use.

5 Appendix
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Fig. 4. Reserved index’s distribution and discarded index’s distribution of different
prediction result.

Fig. 5. Performance of PRID with different discarding number.
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Fig. 6. Four examples of instance discarding with label “1”. Among them, the blue box
is the case where the distortion is too serious to judge the coronary by the network or
the case that only have background, and the red box is the case with obvious distortion.
And instances without boxes are of high quality.
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