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Abstract. Computer aided diagnosis (CAD) has gained an increased
amount of attention in the general research community over the last years
as an example of a typical limited data application - with experiments
on labeled 100k-200k datasets. Although these datasets are still small
compared to natural image datasets like ImageNet1k, ImageNet21k and
JFT, they are large for annotated medical datasets, where 1k-10k labeled
samples are much more common. There is no baseline on which methods
to build on in the low data regime. In this work we bridge this gap by
providing an extensive study on medical image classification with limited
annotations (5k). We present a study of modern architectures applied
to a fixed low data regime of 5000 images on the CheXpert dataset.
Conclusively we find that models pretrained on ImageNet21k achieve a
higher AUC and larger models require less training steps. All models are
quite well calibrated even though we only fine-tuned on 5000 training
samples. All 'modern’ architectures have higher AUC than ResNet50.
Regularization of Big Transfer Models with MixUp or Mean Teacher
improves calibration, MixUp also improves accuracy. Vision Transformer
achieve comparable or on par results to Big Transfer Models.

Keywords: Limited Data - Transfer Learning - Big Transfer Models -
Vision Transformer - Medical Image Classification.

1 Introduction

Automated analysis from radiology images like X-ray, CT, MRI, and ultrasound
is becoming a valuable support tool for diagnosing and treating injuries and
diseases. With the success of deep learning for image classification more and more
applications come within reach of becoming standard tools for radiologists. The
tremendous increase in research on medical image classification is usually fueled
by strategies from the natural image domain (computer vision). At the same time
computer aided diagnosis (CAD) has gained an increased amount of attention
in the general research community over the last years as an example of a typical
limited data application - with experiments on labeled 100k-200k datasets. A
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Fig. 1: Uncalibrated ECE vs. AUC on CheXpert5000. Metrics are computed on
resplit test set. (left) circle size corresponds to number of model parameters,
(right) circle size corresponds to our required training steps until convergence.
Models pretrained on ImageNet21k achieve a higher AUC. All 'modern’ archi-
tectures have higher AUC than ResNet50. Larger Models require less training
steps. All models are quite well calibrated even though we only fine-tuned on
5000 training samples. Regularization with MixUp and Mean Teacher (ema) re-
duces calibration error, MixUp simultaneously increases accuracy for BiT-50x1.
*) pretrained on ImageNet **)pretrained on ImageNet21k

common approach to handle limited data regimes is transfer learning. Models are
pretrained on large natural image datasets and then afterwards fine-tuned to the
medical application. However, radiology images are quite different from natural
(photographic) images and computer vision (CV) methods need to be adapted
to the medical image domain. To complicate matters, large labeled datasets
are widely available in the CV community and associated methods build on
this fact. In the medical domain, annotations are much harder to obtain. These
burdens are a major bottleneck in the development and transfer of CV model
to image classification applications in radiology. These connections also generate
a phenomenon in the medical image community. While in CV new methods
are usually compared in large studies and promoted as general problem solvers,
in the medical community specific adaptations of a solution are presented. For
newcomers, an overview of the available baselines is often missing.

In the recent past, great improvements have been achieved in transfer learn-
ing on natural images. An elementary component for successful transfer learn-
ing is the scaling of model capacity and pretraining datasets. Bigger is better.
So-called Big Transfer Models (BiT) [8] have reached the state of the art for
many visual benchmarks in the natural image domain. BiT models are tweaked
ResNet [6] variants which are optimized for transfer performance. Recently, [12]
applied these models to the CheXpert dataset [7] (among others) to study the
transfer effect to the medical image domain. The authors found these models
to outperform a ResNet50 baseline on all studied datasets. The overall find-
ings in this work are very promising, but it should be noted that CheXpert is
comparably large for a medical dataset with over 200k X-ray images. Is it not



CheXpert5000 3

uncommon for medical dataset to be drastically smaller (four-digit range). The
authors do indeed study the effect of fewer labels, by reducing the amount of
transfer labels and comparing to the full ResNet50 baseline. This top-down ap-
proach naturally provides information on robustness to data reduction, but it
still misses a very important point. For safety-critical applications, the ultimate
goal should always be to achieve the greatest accuracy on the greatest amount of
data available. An important question is therefore, if only few examples
are available, how can we get the most out of them. This just mentioned
top-down approach has limitations for directly comparing methods specifically
in a low data regime. We believe that a direct comparison of methods is essential
to improve performance on low medical data regimes. One might argue that per-
formance on small data regimes will become obsolete in the near future due to
federated learning [I3] but we believe that large datasets will still be correlated
to economic interest. High quality labels from specialized domain experts are ex-
pensive and are subject to chance/privilege for individual patients (like selection
of relevant diseases and patient groups). We therefore provide a comprehensive
study of modern architectures and regularization approaches at a fixed low data
regime to fill the gap of method comparisons to improve performance specifically
on limited medical data. We not only test Big Transfer models in a very small
data regime but also Vision Transformers [3], another model class pretrained on
huge datasets which have recently outperformed CNNs.

Our contribution is a study of these modern architectures/methods applied
to a fixed low data regime of 5000 images on the CheXpert dataset, which to
our knowledge does not exist in this form. We include:

1. Big Transfer models [8] at varying sizes,
2. ConvNets vs. Vision Transformer [3], [19],
3. gains of standard regularization: Mean Teacher [I7] and MixUp [21],
4. public data splits to enable direct method comparison in the future.

2 Related Work

This work is mainly inspired by ’Supervised Transfer Learning at Scale for Med-
ical Imaging’ [12]. This work compares accuracy on the CheXpert dataset for
Big Transfer (BiT) models [8] of different sizes pretrained on datasets of dif-
ferent sizes. BiT models are updated/improved (wide) ResNet-v2 models [6]
which are optimized for transfer learning. Batch normalization is replaced with
group normalization. Studied BiT models are BiT-50x1, BiT-101x1, BiT-50x3,
and BiT-101x3, the baseline is a standard Resnet50 [B]. The BiT models are
pretrained on three datasets of increasing size: 1. ImageNet [14]: 1.3M image,
1000 classes, multi-class labels, 2. ImageNet-21k [2]: 14M images, 21000 classes,
multi-class labels and 3. non-public JFT-800M [16]: 300M images, 18k classes,
average of 1.29 labels per image, with pretrained weights for the former two
publicly available. In [12], all BiT models outperform the ResNet50 baseline (all
pretrained on ImageNet) on all medical datasets.
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Generally accuracy increases for increase in model size and increased number
of pretraining samples. There are more improvements from ImageNet to Ima-
geNet21k pretraining than from ImageNet21k to JET. Larger models are more
data efficient and models pretrained on larger datasets are more data efficient. A
BiT-50x1 model pretrained on ImageNet only requires 75% of the data to achieve
the same accuracy as a standard Resnet50. A BiT-101x3 model pretrained on
Imagenet21K [2] only requires 49%. They find that larger models converge faster
(taking only about half of the time, sometimes even less) and larger models show
better generalization performance to other datasets in the same domain (small
domain shift). The authors find improved calibration for the larger models on
a dermatology dataset [9] (derived from camera images which are presumably
closer to natural images than X-ray imaging) but not for the CheXpert dataset.

For applications in safety-critical applications like medical image analysis it
is essential that models do not only provide highly accurate predictions on the
test domain (as well as under domain shift) but they should also be well cali-
brated. For a well predicted model, the predicted numerical output (referred to
as confidence) should correlate to the real accuracy of the model. The predicted
confidence then provides a reliable measure of certainty /uncertainty of a predic-
tion. In the last years the best performing convnet models like ResNet, Dense-Net
and Efficient-Net unfortunately showed poor calibration properties [4]. Recently
Minderer et al. [IT] have shown that newer model architectures MLP-Mixer [18]
and Vision Transformer (ViT) [3] not only achieve higher accuracy on ImageNet
but also improved calibration. This also applies to BiT models to some extent.
These findings apply also to performance under distribution shift. These findings
have been established in natural images at large scale. It is not clear how these
results transfer to very limited medical data.

ViT models been successfully applied to medical images with results on par
with a ResNet50 baseline [10]. We hope to transfer their successes to our case
as well.

3 Experiments

We study BiT and ViT models in our experiments, as well as established reg-
ularization methods Mean Teacher and MixUp. For comparison to older works
we compare all results to ResNet50, a very common backbone in medical image
classification. All experiments are based on pretrained models which are then
fine-tuned to CheXpert5000. Our baseline ResNet50 and DeiT are pretrained
on ImageNet, while all other models are pretrained on Imagenet21k. We use
models and pretrained weights from the timm library [20] (PyTorch). For all ex-
periments we use the weak image augmentation described in[3.1] The best model
has highest AUC on the validation set. We trained all models on five different
train sets with 5000 images each and provide mean and standard deviation of
the five best models. All 5k models are trained on the same five train sets. For
comparison we also trained ResNet50 on the full CheXpert dataset.
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3.1 CheXpert5000

We perform our method study on CheXpert [7], a publicly available dataset
of chest X-ray images. It contains 224,316 radiographs from 65,240 patients.
The validation set was created from 234 manually annotated X-rays. The train
set was automatically extracted from patients’ reports. The labels on the train
set were created using natural language processing on these reports. To handle
incomplete diagnosis in the patients’ reports there are 4 categories for 14 ob-
servations (diseases). For each observation the categories are (1) certain disease
observation, (u) uncertain disease observation, (-) disease not mentioned, and (0)
disease ruled out. The dataset also provides age, gender and view point. Most
images are frontal view and PA.

Preprocessing of CheXpert: Mustafa et al. [I2] have found that compar-
ing models on the provided validation set is unreliable due to it’s small size (234
images). We follow their protocol and resplit the original train set into a new
train (75%: 124,664 images), validation (10%: 16,989 images) and test set (15%:
25,205) based on patient id.

We further follow the common practice to reduce the number of classes to 5
(multi-label classification)and map uncertain labels (u) to 1 and missing obser-
vations (-) to 0. To study the effect of limited annotations we create five subsets
of the train set of 5000 labeled samples each which are all frontal view and PA,
half male, half female. We therefore also reduce the validation and test set to
frontal view and PA (validation set: 12,115 images and test set: 18,363 images).
We provide lists of all mentioned splits and subsetsﬂ All subsets are created by
random sampling (uniform distribution) so that all datasets show the same label
distribution as the original dataset.

Mustafa et al. studied varying image resolution as model input and found no
improvement in accuracy on the CheXpert dataset with resolution higher than
224x224. We therefore use the ’small’ version of the dataset with image size
320x320 which is a lot more accessible due to its smaller memory consumption.
All images are normalized with mean 0.5 and standard deviation 0.5.

Large validation sets are obviously not representative for a true small data
regime, however the focus of this work is an analysis of the potential of the
varying model architectures which requires a robust stop criterion. The effect of
small validation sets and resulting fluctuation in convergence of the validation
loss are subject of future work.

Image augmentations in the medical image domain is a risky task, we
therefore only employ limited augmentations again following [12]. Spatial Trans-
formation: We scale images to 248x248, perform random rotation by angle o ~
Uni form(—20,20), random crops to 224x224, random horizontal flips with prob-
ability 50%. Chromatic Transformation: We employ random brightness and con-
trast jitter with factor 0.2.

3 https://gitlab.uni-hannover.de/sontje.ihler /chexpert5000
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3.2 Finetuning: Models and Augmentation

Our ResNet50 baselines were fine-tuned using SGD with learning rate 0.003,
momentum 0.9, weight decay 2e-5, 10 warm up epochs, and plateau scheduler
(patience: 10 epochs, decay rate : 0.1). Training was terminated when the learn-
ing rate dropped below le-6. We used batchsize 512 [8] and batch size 32 which
we found to improve results.

We study the following BiT models [§]: BiT-50x1, BiT-50x3 and BiT-101x3
which can also be found in [I2]. For fine-tuning our BiT models we follow the BiT-
HyperRule which proposes SGD with an initial learning rate of 0.003, momentum
0.9, and batch size 512. During fine-tuning the learning rate should be decayed
by a factor of 10 at 30%, 60% and 90% of the training steps. For datasets with
less than 20k samples, the authors propose 500 fine-tuning steps with a batch
size of 512 and no MixUp [8]. We therefore planned on training all 5k models for
60 epochs but we found that BiT-50x1 did not universally converge in that time.
We therefore trained BiT-50x1 for 100 epochs (= 900 steps). We also found that
finetuning the BiT models with a smaller batch size yielded better results. We
therefore also fine-tuned all BiT models with our baseline protocol with a batch
size of 32.

We employ two configurations of ViT models: ViT-B and DeiT. (ViT-B)
In accordance to the finding of [I5] that more pretraining data generally out-
performs any data augmentation or regularization, we use models pretrained
on ImageNet21k . We therefore do not use any regularization or advanced data
augmentation (apart from the augmentation described in section . Following
their fine-tuning protocol for their smalles datasets, we use SGD with a mo-
mentum of 0.9, use a learning rate of 0.003 and a batchsize of 512. We train
for 500 steps with cosine decay learning rate and 3 warm-up epochs, as well as
gradient clipping at norm 1. (DeiT-S) For the DeiT model we follow the training
protocol of [I0]. We use DeiT-S with a patch size 16. We use Adam optimizer
with learning rate le-4, momentum 0.9, and weight decay le-5, and a plateau
scheduler with minimal learning rate le-6 (warm up for 10 epochs). Batch size
is 64.

Mean Teacher and MixUp: Low data regime strategies like contrastive
and consistency learning are based on (strong) image augmentations. This is al-
ways challenging for medical image diagnosis as perturbations can alter images
in a way that eliminate disease relevant landmarks and features. We therefore
study the effect of two established low data regime approaches Mean Teacher
and MixUp that do not rely on strong data augmentation. We apply both regu-
larizations to BiT-50x1. We follow our baseline protocol with batch size 32 and
set a to 0.5 for MixUp regularization with a MixUp probability of 50%.

4 Results

To evaluate the prediction quality of all models fine-tuned models we provide
the common metric AUC (also: AUROC), i. e. area under the curve for the ROC
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Table 1: BiT models vs. ResNet50 on 5k train set. The BiT models are trained
according to the BiT-HyperRule. We used the same batch size for ResNet50. We
provide the amount of images the model has seen during training (image iter.)
before convergence of validation loss. To enable a comparison on a larger scale
we also provide results from training BiT-50x1 on the full train set.

training batch image AUC
samples size iter. (resplit)

ResNet50 23.51M inlk 5000 512 438k 0.5615%.0028

BiT-50x1 23.51M in21k 5000 512 256k 0.7206£.0021
BiT-50x3 211.19M in21k 5000 512 112k 0.7218%+.0009
BiT-101x3 381.81M in21k 5000 512 99k 0.7317+.0015

BiT-50x1 23.51M in21k 89944* 512 2330k 0.7718
BiT-50x1 23.51M in21k 124663** 512 2070k 0.7714

*) all Frontal /AP views from full resplit train set **) full resplit train set

Model params. pretr.

Table 2: BiT models vs. ResNet50 on 5k train set trained according to baseline
protocol with a batch size of 32. Reducing the batch size (in comparison to BiT-
HyperRule) decreases training time drastically while also improving the accuracy
for all models.

batch image AUC AUC
size iter. (resplit) (official)
ResNet50 23.51M inlk 32 487 0.6866+.0030 0.7949+.0106
BiT-50x1 23.51M in21k 32 42k 0.73614.0018 0.83804.0095
BiT-50x3 211.19M in21k 32 27k 0.7355+.0029 0.8359+.0169
BiT-101x3 381.81M in21k 32 26k 0.7388+.0008 0.8342++.0212

Model params. pretr.

curve (true positive rate vs. false positive rate), and additionally we also provide
class-wise AUPRC, i.e. the area under the PR curve (precision vs. recall) in
the appendix. To quantify the calibration we compute ECE i.e. the expected
calibration error. The calibration error is computed based on histogram binning
with equal number of samples per bin (31 bins). We only compute the calibration
on our test split, as the official validation set is too small to obtain representative
results.

For the highest possible comparisons with other works on CheXpert we pro-
vide accuracy measures on our new test split of automatically labeled samples
as well as the provided validation set of manual annotations. We provide the
numbers of parameters for the used models as well as the amount of images the
best models has seen during training until convergence of validation AUC. The
computation steps can be computed by dividing image iterations by the batch
size.

In Table[1) we show BiT models trained according to BiT-Hyperrule. Equiva-
lent to the results on the full CheXpert datset, larger models show higher accu-
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Table 3: ResNet50 variations vs. Vision Transformer. The ViT-B P16* model
achieves comparable results to Bit-50x1.

batch image AUC AUC

size  iter. (resplit) (official)
ResNet50 23.51M inlk 32 487 0.6866£.0030 0.7949+.0106
BiT-50x1 23.51M in21k 32 42k 0.7361+.0018 0.8380+.0095
DeiT-S P16 21.67M inlk 64 41k 0.7293£.0035 0.8161£.0173
ViT-B P16 87.46M in2l1k 512 352k 0.6394£.0070  0.7704£.0054
ViT-B P16* 87.46M in21k 64 46k 0.7334£.0032  0.8299+.0139
*)ViT-B trained on DeiT-S fine-tuning protocol

Model params. pretr.

Table 4: Vanilla BiT-50x1 (none) vs. regularized BiT-50x1 using MixUp and
Mean Teacher. We provide results for the teacher (ema) model as the teacher
generally achieves higher accuracies.

Regularization params pretr. batch image AUC AUC
size iter. (resplit) (official)

none 23.51M in21k 32 42k 0.7361+.0018 0.83804.0095

MixUP 23.51M in21k 32 50k 0.73734.0005 0.8313+.0116

Mean Teacher 23.51M in21k 32 190k 0.7341+.0141 0.8267+.0103

racy. The BiT-Hyperrule recommends a high batch size of 512 - but we saw great
improvement regarding accuracy and training time when reducing the batchsize
for CheXpert, see Table [2 Fine-tuned with a batch size of 32 the BiT models
arrive at their optimum in significantly less training steps (less than 28 times)
with simultaneously higher accuracy. The BiT models based on ResNet-v2 ar-
chitecture outperform standard ResNet50 not only on large but also on our very
small data regime. ResNet50 and BiT-50x1 are almost identical in architecture
and ResNetb0 can be interchanged easily by BiT-50x1 in existing frameworks to
probably gain a performance boost and shorter training times.

In Table 3] we compare results for ResNet variants ResNet50 and BiT-50x1
(ResNet-v2) to ViT models. Even though ViT models are infamous to require
large amounts of data, they show great performance in this very small data
regime outperform the ResNet50 baseline. The DeiT model is not yet quite
on par with the BiT model, however the bigger ViT model shows comparable
performance (at least when trained with the DeiT-S protocol). These findings
are similar to [10].

We finally show the effect of regularization in the small data regime in Ta-
ble |4} To our surprise regularization has little effect on accuracy. However, both
regularizations improve calibration, see Fig.

Note: Accuracy on the automatic labels is considerably lower than on the
manual labels. This is on par with the works of [1} [12]. We provide the class-wise
AUC und AUPRC in the appendix for all five classes on the official validation
set.
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5 Conclusion and Discussion

In this work we presented a method study of modern architectures applied to a
fixed low data regime of 5000 images on the CheXpert dataset and provide sub-
sets and data splits for reproducibility. Conclusively we find/verify that model
pretrained on ImageNet21k achieve a higher AUC and larger models require less
training steps. All models are quite well calibrated even though we only fine-
tuned on 5000 training samples. All 'modern’ architectures have higher AUC
than ResNet50. Regularization of BiT-50x1 with MixUp or Mean Teacher im-
proves calibration and accuracy. Vision Transformer achieve comparable or on
par results to BiT-50x1. While BiT-50x1 is one of many updates of the ResNet
variants, ViTs are still in their infancy for small data regime szenarios. As ViTs
can outperform CNNs in a large data regime, it may therefore only be a question
of time until they outgrow CNNs for low data regimes.
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A Additional Results

We provide the class-wise error metrics AUC and AUPRC in Tables [5] and [6] as
mentioned in Section 4| We further provide reliability plots (calibration plots)
for a selection of models, see Figure [2l The reliability plots are computed from
31 bins where each bin has an equal amount of samples. Confidence is computed
from the average model prediction per bin. Additionally to the calibration of the
models these plots show the distribution of model predictions for the five classes.
An analysis is given in the caption.

Table 5: Class-wise AUC on official CheXpert validation set. Average number
of appearance in CheXpert5000 train sets: Atelectasis: 1623 (32.46 %), Car-
diomegaly: 815 (16.30%), Consolidation: 1029 (20.58%), Edema: 1775 (35.50%),
and Pleural Effusion: 2357 (47.14%).

Model mean Atelectasis Cardiom. Consolid. Edema Pleu?al
Effusion
ResNet50 0.7949 0.7815 0.6973 0.8390 0.8467 0.8102
BiT-50x1 0.8380 0.7885 0.8044 0.8568 0.8834 0.8568
BiT-50x3 0.8359 0.7709 0.8056 0.8228 0.8949 0.8853
BiT-101-3 0.8342 0.7671 0.8110 0.8166 0.8995 0.8768
BiT-50x1
4 MixUp 0.8313 0.7725 0.8038 0.8445 0.8840 0.8516
ViT-B P16 0.8299 0.7746 0.8146 0.8197 0.8735 0.8672

Table 6: Class-wise AUPRC on official CheXpert validation set. Average num-
ber of appearance in CheXpert5000 train sets: Atelectasis: 1623 (32.46 %), Car-
diomegaly: 815 (16.30%), Consolidation: 1029 (20.58%), Edema: 1775 (35.50%),
and Pleural Effusion: 2357 (47.14%).

Model mean Atelectasis Cardiom. Consolid. Edema Pleu?al
Effusion
ResNet50 0.5769 0.6585 0.4881 0.4328 0.6396 0.6658
BiT-50x1 0.6196 0.6238 0.6687 0.4162 0.7046 0.6845
BiT-50x3 0.6218 0.5797 0.6512 0.3610 0.7455 0.7717
BiT-101-3 0.6275 0.5846 0.6796 0.3681 0.7484 0.7567
BiT-50x1
+ MixUp 0.6113 0.5959 0.6791 0.3966 0.7033 0.6815

ViT-B P16 0.6269 0.6025 0.6775 0.4030 0.6941 0.7574
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Fig.2: Calibration plots for model comparison on resplit test set. A perfectly
calibrated model shows perfect correlation between confidence and class accu-
racy (dotted line). Average number of appearance in CheXpert5000 train sets:
Atelectasis: 1623 (32.46 %), Cardiomegaly: 815 (16.30%), Consolidation: 1029
(20.58%), Edema: 1775 (35.50%), and Pleural Effusion: 2357 (47.14%). It can be
seen that ’pleural effusion’ and ’edema’ have high confidence predictions while
there are no model predictions with high confidence for ’atelectasis’ or ’con-
solidation’. Overall, the class distribution is not a reliable indicator for accu-
racy/confidence see, e.g., 'cardiomegaly’. The top row shows BiT-50x1 trained
on 89944 training samples. The poor prediction quality (no predictions with high
confidence) of the models is therefore not predominantly caused by the low data
regime. Even though some classes show an overall low accuracy, there is a high
correlation between model predictions and accuracy for all models and all classes
in both regimes.
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