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Abstract. Tissue typology annotation in Whole Slide histological im-
ages is a complex and tedious, yet necessary task for the development
of computational pathology models. We propose to address this prob-
lem by applying Open Set Recognition techniques to the task of jointly
classifying tissue that belongs to a set of annotated classes, e.g. clin-
ically relevant tissue categories, while rejecting in test time Open Set
samples, i.e. images that belong to categories not present in the training
set. To this end, we introduce a new approach for Open Set histopatho-
logical image recognition based on training a model to accurately iden-
tify image categories and simultaneously predict which data augmenta-
tion transform has been applied. In test time, we measure model con-
fidence in predicting this transform, which we expect to be lower for
images in the Open Set. We carry out comprehensive experiments in
the context of colorectal cancer assessment from histological images,
which provide evidence on the strengths of our approach to automat-
ically identify samples from unknown categories. Code is released at
https://github.com/agaldran/t3po .
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1 Introduction and Related Work

Computational pathology has become fertile ground for deep learning techniques,
due to several factors like the availability of large scale annotated data coupled
with the increase in computational power, or the extremely time-consuming and
tedious nature of visual histology examination [14,6,18]. In this context, the
advanced pattern recognition capabilities of modern neural networks represents
a great match for the challenges posed by digital histopathology.

However, for each new dataset that a practitioner needs to analyze, there is a
requirement to annotate large whole slide images, which contain many different
tissues, some of them relevant for the task at hand, whereas some others not.

https://github.com/agaldran/t3po
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In this situation, this manual annotation processing can be focused only on the
labeling of the relevant tissues. Hence, an algorithm that could automatically
disregard data samples outside the set of categories initially labeled by the user
would be greatly useful. Another plausible scenario arises if the practitioner has
labeled all of the tissue typologies that might be of interest to them, but regions of
anomalous appearance show up at a later stage. These could belong to a category
of clinical interest, such as rare disease signs, or simply be acquisition artifacts,
but manual review of these findings could be advisable to prevent potential
misdiagnosis. An obvious solution to these problems would be to flag samples
in test time for which the computational model is unconfident on its prediction,
assuming this could point to atypical data. Unfortunately, deep neural networks
are known to be incapable of associating anomalous inputs to meaningful low
confidence values [8], and there is the need for specific solutions [15].

A suitable framework to solve the above problems is based on Open Set
Recognition (OSR) techniques. These are a class of learning algorithms designed
to handle the presence in test time of data out of the categories on which a model
was trained. This is closely related to Out-of-Distribution (OoD) detection; for
the sake of clarity, we stress that here we follow the definitions given in [24], and
consider OoD detection as the problem of identifying in test time samples that
do not belong to the data distribution where the model was trained, without the
simultaneous goal of also performing classification on data belonging to known
categories. For example, a popular approach to OoD detection involves training
a model to solve some pretext task for which we know the solution beforehand,
e.g. predicting the way in which an image has been geometrically transformed [7].
The rationale is that after training, for in-distribution data the model will be able
to accurately predict the applied transformation, whereas for OoD data it will
most likely fail to recognize it. Other common OoD detection methods include
exposing the model to outliers during training [10], observing the maximum
softmax probability [9], or adding extra branches to the model to account for
predictive confidence [5]. These and most other techniques have been proposed
in the context of natural images, and it has been shown that they may not
translate satisfactorily for OoD detection in medical imaging [1,26].

OSR and OoD detection are also related to Domain Shift/Adaptation (DS/A),
the task of training a model to accurately classify data collected in a particular
domain, and having the same model generalize to data with the same categories
but gathered from a different domain, e.g. a second hospital with a different
tissue preparation protocol or acquisition device [11]. In histopathological image
analysis, OoD detection and DS/A have been more studied in recent years than
OSR. For instance, in [22] the effect of color augmentation techniques on domain
generalization in image classification on slides acquired in 9 different pathology
laboratories was analyzed, and in [25] unsupervised style transfer techniques from
non-medical data were applied to enhance robustness to domain shift. Stacke et
al. also studied domain shift in histological imaging in [20,21], defining a mea-
sure in the space of learned image representations to quantify it and using it to
detect data for which a model may struggle to generalize. Ensembling techniques
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are also popular for uncertainty quantification in histological data, and can be
put to use for identifying unreliable predictions, which can then be associated to
OoD data [23]. This was proposed for instance in [16], where multi-head CNNs
were shown to be superior to Monte Carlo dropout and deep ensembles for the
task of flagging breast histologies containing lymph node tissue showing signs of
diffuse large B-cell lymphoma, an anomaly that was not present in the training
set. Self-supervision based on contrastive learning and multi-view consistency
has also recently been leveraged for learning robust representations that may
enable DA, namely in [4]. In [2], the authors used a similar approach to learn
representations that could be useful for performing OoD detection under DS.

In this paper we introduce a novel method for OSR on histological images
based on recycling information obtained during training regarding the kind of
data augmentation operations that are applied online to the training data. We
conjecture that for images belonging to known categories, a model trained to
predict those operations will be more confident in test time, whereas for OoD
data the model will be uncertain when solving this pretext task. We validate
our hypothesis on two popular datasets related to colorectal cancer detection,
where our experiments show that the proposed approach can accurately classify
images from categories used for training and simultaneously reject clinically
uninformative regions in an image without the need to manually label them.

2 Methodology

In this section, we introduce basic definitions related to the OSR setting and
explain our data augmentation pipeline, which allows us to define transform
prediction in a well-posed way. We then define our OSR method that jointly
classifies in-distribution data and measures confidence in predicting if a data
transform operation has been applied in order to declare a sample as OoD.

2.1 Open Set Recognition - Max over Softmax as a strong baseline

In an OSR scenario, we start from a labeled training set Ctrain with examples
belonging to N known categories K = {k1, ..., kN}, which compose the known,
or Closed Set. However, in test time the classifier encounters samples from an
Open Set Otest with M unknown categories U = {u1, ..., uM} not seen during
training, i.e. Dtest = Ctest∪Otest. The goal of an open set classifier is to generate
a reliable prediction on Ctest while also rejecting samples from Otest.

There exist many approaches to OSR [9]. However, it has been recently
demonstrated in [24] that the simplest of all OSR methods, when optimized
so as to maximize closed set accuracy with modern model architectures Uθ and
training techniques, attains state-of-the-art OSR results. This baseline method
consists of minimizing the cross-entropy loss between one-hot labels y and soft-
max probabilities pθ(y|x) for x ∈ Ctrain, and then define an OSR score as the
maximum softmax probability S(y ∈ Ctest|x) = maxy∈C pθ(y|x), assuming that
Uθ will distribute probabilities with high entropy for unknown classes, resulting
in a low S(y ∈ Otest|x) value.
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Fig. 1: Transform space Tapp, shown left to right: Tapp ={Identity, Brightness,
Contrast, Saturation, Hue, Gamma, Sharpness}. Our model learns to predict
the applied transform during training. In test time, the model only receives
un-transformed images, and we measure its confidence on transform prediction.

2.2 Decoupled Color-Appearance Data Augmentation

Data augmentation operations (image transforms in computer vision), are a con-
ventional technique to increase generalization and reduce overfitting when train-
ing deep neural networks. Recently, learned data augmentation, which learns
an optimal transformation policy from a validation set, has gained popularity,
with increasingly complex techniques being proposed. However, this comes at a
noticeable training overhead that has been recently shown to be indeed unneces-
sary [17]: the simpler scheme of randomly selecting, for each optimization step,
a single image transform (instead of a composition of transforms) from a fixed
transform space T , with a variable strength, works remarkably well.

Inspired by [17], we define a data augmentation policy with a single transform
at a time, allowing us to pose the auxiliary problem of predicting which transform
has been applied to a training sample. Also, noting that geometric transforms are
hardly predictable on histological data (as opposed to natural images, there is no
meaningful notion of top/bottom, rotations, etc.), we decouple geometry from
appearance, and define our transform space as T = Tgeom ∪ Tapp, where Tgeom
contains geometric transformations - rotations, shears, and translations - whereas
Tapp contains only color transformations. These transforms are illustrated and
listed in Fig. 1; definitions can be found in the standard Python Image Library
https://github.com/python-pillow/Pillow.

2.3 Test-Time Transform Prediction and Open Set Recognition

We formulate the training of our model as a joint optimization of two tasks.
During training, we sample an image x from Ctrain, apply a random geometric
transform τg ∈ Tgeom, then an appearance transform τa ∈ Tapp, and pass it
through a CNN Uθ, which produces an internal representation xθ. This is then
sent to the main branch fα, a fully connected layer followed by a softmax opera-
tion, which generates a probability of x belonging to a known category from K,
but also to an auxiliary branch gβ that predicts the actual appearance transform
τa that was applied. Among these there is the Identity operation, meaning that
the model needs to learn what an image x ∈ C looks like.

Finally, in test time, an image x is processed by Uθ without applying any
transform, resulting in a classification score fα(Uθ(x)), and we define as our OSR

https://github.com/python-pillow/Pillow
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Fig. 2: Visual scheme of our OSR Test-Time Transform Prediction technique. A
shared representation Uθ(τ(x)) is sent to two linear layers, fα performs Closed
Set classification and gβ predicts the applied transform τ . In test time, our OSR
score is the confidence of the transform prediction branch gβ on its prediction.

score the maximum of softmax probabilities on the transform prediction task:

S(y ∈ Ctest|x) = max
τa∈Tapp

gβ(τa|x). (1)

In essence, we expect the model to be more confident when predicting the trans-
form on Ctest than onOtest. Let us note that we could also generate and aggregate
predictions on transformed test images (Test-Time Augmentation), although this
would induce an inference overhead that we prefer to avoid in this work. An il-
lustration of the proposed OSR approach is shown in Fig. 2.

3 Experimental Analysis

In this section we introduce our experimental setup: datasets, proposed OSR
tasks, and detailed performance evaluation with a discussion on the numerical
differences between compared methods, as well as limitations of our technique.

3.1 Datasets and Open Set Splits

We evaluate our technique on a clinically meaningful task, namely colorectal
cancer (CRC) assessment. In this context, tumor tissue composition is heteroge-
neous, non-stationary, and its study is key to disease prognosis [13]. A common
technique for CRC monitoring is quantification of tissue configuration by histo-
logical evaluation of Hematoxylin and Eosin (H&E) stained tissue sections.

We consider two publicly available datasets5 that enable CRC tissue char-
acterization, referred to as Kather-5k [13] and Kather-100k [12]. Examples of
images from each tissue type in these datasets are shown in Fig. 3. Specifically:

5 Kather-5k: http://doi.org/10.5281/zenodo.53169
Kather-100k: http://doi.org/10.5281/zenodo.1214456

http://doi.org/10.5281/zenodo.53169
http://doi.org/10.5281/zenodo.1214456
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Fig. 3: Closed (green) and Open (orange) Set partitions defined on the two con-
sidered datasets, please see the text for acronym definitions and motivation.

• Kather-5k contains 5,000 image patches extracted from 10 tumoral tissue
slides with 8 classes: tumor epithelium (TUM), simple stroma (s-STR), homo-
geneous tissue, with tumoral and extra-tumoral stroma, but also muscle, com-
plex stroma (c-STR), which may contain some immune cells, immune cell con-
glomerates (LYM), debris (DEB), which includes necrosis or mucus, normal
colon mucosa (NORM), adipose tissue (ADI), and background tissue (BACK).
Data is balanced, with 150× 150 pixel size and 74µm/px resolution.
• Kather-100k is larger, with 100,000 image patches extracted from 86 CRC tis-

sue slides, originally used for overall CRC survival prediction. It has 9 differ-
ent tissue types: tumour epithelium (TUM), cancer-related stroma (t-STR),
smooth muscle (MUS), immune cell conglomerates (LYM), debris/necrosis
(DEB), mucus (MUC), normal colon mucosa (NORM), adipose tissue (ADI),
and background (BACK). Note some subtle differences with Kather-5k: the
category debris is split into debris/necrosis and mucus; also, stroma is not di-
vided into simple an complex: only tumoral stroma is considered, whereas mus-
cle is a new category. Data is approximately balanced and color-normalized,
with images of size 224× 224 and 122µ/px resolution.

Next, following expert pathologist’s advice, we define several Closed/Open
set splits in each dataset, illustrated in Fig. 3. We first design a split S1 mimicking
the hypothetical situation in which a practitioner decides to label only clinically
informative tissue regions, and leaves uninformative regions unlabeled, expecting
the OSR model to automatically identify it as part of the Open Set O, while
still achieving high accuracy in the Closed Set C. Note that this is not a trivial
task, since necrotic tissue, part of the debris category, can be infiltrated by
inflammatory cells, and therefore the lymphocytes class acts as a confounder
in the closed set. To supplement our experimental analysis and understand the
weaknesses of OSR systems in this application, we also define two other splits
S2 and S3. In S2 we aim at analyzing if an OSR classifier can classify tumoral
regions while rejecting healthy tissue as well as uninformative samples in test
time, so we include tumor and stroma patches in the closed set. Note that for
both datasets there are now some confounders in the Open Set. Namely, in the
Kather-5k dataset complex stroma images may include some immune cells, but
the immune-cell conglomerate category is in the Open Set of S2. On the other
hand, in the Kather-100k dataset stroma images do not include immune cells,
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Table 1: Performance averaged over 10 training runs of our approach and other
OSR techniques on several Open/Closed splits of the Kather-5k dataset. Best
performance is underlined, results within its confidence interval are bold.

Split 0 Split 1 Split 2

ACC AUC ACC AUC ACC AUC

CE+ 93.03 91.66 94.27 82.51 92.88 90.02

ARPL 92.84 88.96 92.51 80.28 93.39 82.39

MC-Dropout 93.16 91.52 94.02 82.19 92.80 85.45

T3PO (Ours) 92.54 93.55 94.27 84.73 91.80 91.24

but the stroma and the muscle categories share a fibrous aspect, and muscle
images belong to the Open Set. For comparison purposes, in the last split S3 we
move the lymphocites class to the Closed Set, which should result in an easier
OSR task at the expense of a more challenging Closed Set classification task,
since now C contains two similar classes.

3.2 Implementation Details and Performance Evaluation

We compare Test-Time Transform Prediction (T3PO) with the state-of-the-art
ARPL technique [3], and CE+, the strong baseline proposed recently in [24],
which consists of maximizing the Closed Set accuracy of the classifier and, in-
stead of taking the maximum over the softmax probabilities as the OSR score,
use the maximum over the logits, i.e. pre-softmax activations of the network. We
also adopt the MC-Dropout baseline (applying dropout multiple times (n = 32)
in test time and collecting the entropy of the resulting set of softmax probabilities
as the OSR score), popular in medical image analysis problems [16].

Since previous work has shown that relatively small architectures are capable
of achieving high accuracy on the two considered datasets, for the sake of quick
experimentation we always train a MobileNet V2 network as our backbone [19],
starting from ImageNet weights. Following [13], we split the data into 70% for
training, 15% for validation and early-stopping, and 15% for testing. In all cases
we train with a cyclical learning rate starting at l = 0.01 and a batch-size of 128,
for 200 epochs in the Kather-5k dataset. Due to the larger amount of training
samples, we only train for 20 epochs in the Kather-100k dataset, which is enough
for all models to converge. We use the Adam optimizer, monitor the Closed Set
accuracy during training, and keep the highest-performing checkpoint. After
training, we collect model accuracy on the Closed test set, and OSR scores in
the Closed and Open test sets. We perform ten training runs per split and report
mean Closed Set accuracy and Closed/Open AUC.
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Table 2: Performance averaged over 10 training runs of our approach and other
OSR techniques on several Open/Closed splits of the Kather-100k dataset. Best
performance is underlined, results within its confidence interval are bold.

Split 0 Split 1 Split 2

ACC AUC ACC AUC ACC AUC

CE+ 99.54 96.50 99.69 84.59 99.62 82.96

ARPL 98.88 91.76 99.33 78.00 98.98 79.96

MC-Dropout 99.57 96.23 99.64 84.93 99.58 84.52

T3PO (Ours) 99.46 96.57 99.66 83.32 99.56 92.42

3.3 Results and Discussion

Tables 1 and 2 show the performance of the considered OSR techniques on
the Kather-5k and Kather-100k datasets respectively. The first split, which in
both cases sets out the task of classifying clinically relevant tissue categories,
is successfully solved to a high accuracy by all approaches, with no statistically
significant difference between our proposed T3PO and the top performer MC-
Dropout. If we analyze the ability of each method to reject uninteresting data
in test time, however, we see that T3PO outperforms the other techniques, by
a relatively wide margin in the Kather-5k dataset, in terms of Closed/Open Set
AUC, indicating that our method can better identify Open Set data in this case.

The second and third split in the Kather-5k dataset illustrate a limitation
of OSR approaches. In the second split, the Open Set contains images from the
immune cell category, and immune cells are also present on some images from
the complex stroma class, which belongs to the Closed Set. This results in a
generally lower AUC for all methods, although T3PO continues to outperform
other techniques. In addition, when we move the immune-cell category from the
Open to the Closed Set, we see a noticeable increase in AUC for all methods
(and a decrease in accuracy, since two visually similar categories are now in the
Closed Set), with T3PO still significantly attaining top performance in Open
Set recognition. It should be noted that this is achieved at the cost of a modest,
but statistically significant decrease in Closed Set accuracy for the third split.

Lastly, the second and third split in the Kather-100k dataset also show a
similar phenomenon. In this case the muscle class belonging to the Open Set in
the second split drives the Closed/Open AUC down for all methods, since it is
confounded with the stroma category from the Closed set, and we see that T3PO
is among the worst techniques now. However, when we move the muscle class into
the Closed Set, T3PO increases the AUC by more than 9 points, outperforming
all other methods, and losing very little accuracy.
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3.4 Conclusion and Future Work

We have illustrated how a clinically meaningful task, disregard irrelevant image
regions from histological slides without explicitly training a model to discrim-
inate them, can be addressed with OSR techniques. We have also introduced
T3PO, a new OSR method that outperforms several recent approaches in most
cases. We have also discussed its limitations, namely T3PO consists of the identi-
fication of global image transformations in test time, thereby relying on low-level
image characteristics like color and aspect, but not taking full advantage of other
semantic cues, which may result in sub-optimal performance. We leave the inte-
gration of the knowledge of image content into our approach for future work.
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