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Abstract. Benefited from the rich and detailed spectral information in
hyperspectral images (HSI), HSI offers great potential for a wide variety
of medical applications such as computational pathology. But, the lack
of adequate annotated data and the high spatiospectral dimensions of
HSIs usually make classification networks prone to overfit. Thus, learn-
ing a general representation which can be transferred to the downstream
tasks is imperative. To our knowledge, no appropriate self-supervised
pre-training method has been designed for histopathology HSIs. In this
paper, we introduce an efficient and effective Self-supervised Spectral
Regression (S3R) method, which exploits the low rank characteristic in
the spectral domain of HSI. More concretely, we propose to learn a set
of linear coefficients that can be used to represent one band by the re-
maining bands via masking out these bands. Then, the band is restored
by using the learned coefficients to reweight the remaining bands. Two
pre-text tasks are designed: (1) S3R-CR, which regresses the linear coeffi-
cients, so that the pre-trained model understands the inherent structures
of HSIs and the pathological characteristics of different morphologies; (2)
S3R-BR, which regresses the missing band, making the model to learn
the holistic semantics of HSIs. Compared to prior arts i.e., contrastive
learning methods, which focuses on natural images, S3R converges at
least 3 times faster, and achieves significant improvements up to 14% in
accuracy when transferring to HSI classification tasks.

Keywords: Self-supervised learning · Hyperspectral histopathology im-
age classification · Low-rank.

1 Introduction

Histopathology plays an important role in the diagnostic and therapeutic aspects
of modern medicine [21,15]. As artificial intelligence is evolving rapidly, deep
learning based image processing techniques have been extensively reported for
histopathological diagnosis [15]. Nowadays, the microscopy hyperspectral imag-
ing system has become an emerging research hotspot in the field of medical image
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analysis [17], benefited from the rich spatiospectral information provided by hy-
perspectral images (HSI). Thus, it provides a new perspective for computational
pathology and precision medicine.

Supervised learning for histopathology image analysis requires a large amount
of annotations [16]. Since both expertise and time are needed, the labeled data
with high quality annotations are usually expensive to acquire. This situation
is more conspicuous for annotating HSIs [22], whose appearances are different
compared with RGB images, so pathologists may take longer time in recognizing
cancer tissues on HSIs. Typically, an HSI is presented as a hypercube, such high
spatiospectral dimensions make it difficult to perform accurate HSI classification,
especially when the annotated data is limited, which may lead to overfitting
problems. Thus, an appropriate HSI pre-training method is imperative.

In recent years, self-supervised pre-training has been successful in both nat-
ural language processing [6] and computer vision. Previous research of self-
supervised learning mainly focuses on contrastive learning, e.g., MOCO [12],
SimCLR [3], BYOL [9] and SimSiam [4], training encoders to compare positive
and negative sample pairs. Among these methods, BYOL [9] and SimSiam [4]
achieve higher performance than previous contrastive methods without using
negative sample pairs. But, the training setup e.g., batch size in original pa-
pers is not always affordable for research institutions. More recently, masked
image modeling (MIM) methods represented by MAE [11] have been proved to
learn rich visual representations and significantly improve the performance on
downstream tasks [18]. After randomly adding masks to input images, a pixel-
level regression target is set as a pretext task. Almost all the MIM methods are
designed based on transformers which receive and process tokenized inputs.

Different from natural images, HSIs analyze how light transmittance varies
on different forms of tissues or cells, which infect the brightness of various re-
gions [8]. This generates dozens even hundreds of narrow and contiguous spectral
bands in the spectral dimension. Understanding the inherent spectral structure
in self-supervised pre-training is non-trivial for the networks to conduct down-
stream tasks. To the best of our knowledge, there is not any self-supervised
method designing the architecture tailored for microscopy HSI classification yet.
In this work, we present Self-Supervised Spectral Regression (S3R), an efficient
and effective pre-training objective that takes advantage of low rankness in the
spectral domain. More specifically, we assume that one band can be represented
as a linear combination of the remaining bands, and propose to learn the linear
coefficients by a Convolutional Neural Network (CNN) based backbone via mask-
ing out the remaining bands. We propose two alternative pretext tasks, which
have different focuses. (1) Coefficients Regression (S3R-CR), which makes the
network to directly regress the “groundtruth” linear coefficients learned before-
hand. In this way, the pre-trained model acquires an adequate understanding
of complex spectral structures and pathological characteristics of different mor-
phologies. (2) Band Regression (S3R-BR), regressing the pixel intensity of the
selected band by re-weighting the remaining bands. Since detailed information
(edges, textures, etc.) is already stored in different bands of the HSI, our spectral



S3R: Self-supervised Spectral Regression 3

𝐻 ×𝑊 × 𝐵 𝐻 ×𝑊 × (𝐵 − 1)
𝐻 ×𝑊

𝒚

𝒀𝒃

𝒚𝝏𝒃

𝜉𝒃

෩𝜷𝒃𝟏

෩𝜷𝒃𝟐

෩𝜷𝒃𝑩−𝟐

෩𝜷𝒃𝑩−𝟏

𝐻 ×𝑊

𝒀𝒃෡𝒀𝒃

…

Fig. 1. Illustration of spectral regression in HSI. The whole process to estimate the
coefficient β̃b can be optimized by back-propagation. Ŷb denotes the regression result.
The dice icon refers to randomly sampling a band Yb as the regression target.

regression approach will allow the model to focus more on the intrinsic associa-
tion between spectral bands and the overall semantics of the masked image. Ex-
periments show that our S3R-CR and S3R-BR perform better than contrastive
learning and masked image modeling methods, and significantly reduces the cost
of self-supervised task due to the faster convergence.

2 Method

2.1 Spectral Regression based on Low-rank Prior

Since the spectral correlation in HSIs is extremely high, HSIs can be well rep-
resented in a low-dimensional subspace [23]. Let Y ∈ RH×W×B denote a HSI
presented in 3D tensor with H ×W pixels and B spectral bands. We assume
that Yb ∈ RH×W , denoting the b-th spectral band in Y, can be represented by a
linear combination of the remaining B − 1 bands with a set of coefficients. This
can be formulated as:

Yb = ξb +

B∑
i=1

1[i 6= b] ·Yi · βbi , (1)

where βbi denotes the linear coefficient corresponding to the ith band, and 1[·]
is the indicator function. Let βb = (βb1 , . . . , βbb−1

, βbb+1
, . . . , βbB )

ᵀ ∈ R(B−1)×1.
Due to the existence of noise from hyperspectral imaging system, the linear
regression process will generate a small error, ξb ∈ RH×W , which could not be
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Fig. 2. Our S3R architecture. During pre-training, we randomly select the bth band
Yb from the input HSI Y. Then the remaining bands Y∂b are masked out by random
patches. The encoder is applied to learn a set of coefficients β̂bi from masked bands
Y ′

∂b
. The learned coefficients are then directly fit β̃b (a) or reweight Y∂b to regress the

initially selected band Yb (b).

eliminated completely. Eq. 1 provides a linear regression model, which regresses
a spectral band by the remaining bands.

To find βbi , Eq. 1 can be estimated by minimizing the following loss function:

L =

∥∥∥∥∥Yb −
B∑
i=1

1[i 6= b] ·Yi · βbi

∥∥∥∥∥
2

F

. (2)

One can simply obtain an estimation of the coefficient β̃bi through back-propagation
by deriving the partial derivatives of βbi :

β̃bi = βbi − α
∂L
∂βbi

, (3)

or applying a closed-form solution. Let β̃b = (β̃b1 , . . . , β̃bb−1
, β̃bb+1

, . . . , β̃bB )
ᵀ ∈

R(B−1)×1. The overall process is shown in Fig. 1.

2.2 Model Based Spectral Regression

Previous section indicates that tensor low-rank prior is an inherent property of
HSI which does not rely on any supervisory information. Inspired by the low-
rank prior, we propose a Self-supervised Spectral Regression (S3R) architecture
for hyperspectral histopathology image classification.
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As shown in Fig. 2, we first randomly extract a band Yb from an HSI Y. Let
Y∂b
∈ RH×W×(B−1) denote all bands except the bth band. Next, we randomly

mask out Y∂b
to obtain the masked images Y ′∂b

. Then, a CNN based backbone
is used to encode and learn a set of coefficients β̂bi given Y ′∂b

. Last, the learned
coefficients β̂b are applied to a pretext task.

In our architecture, we consider two pre-training objectives: (1) coefficient
regression (S3R-CR) and (2) spectral band regression (S3R-BR), whose details
will be given below.

Image Masking We randomly extract a band Yb ∈ RH×W from input HSI
Y ∈ RH×W×B , and mask the remaining bands Y∂b

with an approximately 65%
masking ratio. Like other MIM methods [1], manually adding strong noise in-
terference can significantly make the pretext task more challenging. Note that
contents in different bands are masked out independently, which is not the same
as MIM.

Coefficients Regression The obtained β̃b from Eq. 3 can be treated as the
groundtruth of the coefficients. Forcing the network to learn the coefficients via
randomly masking out a portion of Y∂b

will make the network to understand
the inherent structure of HSI. Residual architecture is proven to work well for
HSI classification [14]. Thus, a vanilla ResNet is adopted to encode the masked
tensor Y ′∂b

∈ RH×W×(B−1), followed by a MLP head which maps features to the
predicted coefficient β̂b, where β̂b = (β̂b1 , . . . , β̂bb−1

, β̂bb+1
, . . . , β̂bB )

ᵀ ∈ R(B−1)×1.
Noted that the MLP head will not be involved in the downstream task. The loss
function for optimizing coefficient regression is computed by:

LCR =

B−1∑
i=1

∥∥∥β̂bi − β̃bi∥∥∥
1
. (4)

Spectral Band Regression As mentioned in Sec. 2.1, we assume that one
band can be represented as a linear combination of the remaining bands. The
selected band Yb can be represented by the generated linear coefficients β̂b and
Y∂b

. Then, we aim to minimize the following loss function:

LBR =

∥∥∥∥∥Yb −
B∑
i=1

1[i 6= b] ·Yi · β̂bi

∥∥∥∥∥
1

, (5)

where β̂b does not require the supervision of β̃b learned from Eq. 3.
The two proposed pretext tasks are based on learning the inherent spec-

tral structure, but they have different focuses. S3R-CR tries to figure out the
similarity between Y∂b

and Yb, i.e., β̂b, and focuses more on the pathological
characteristics of different morphologies. S3R-BR could be regarded as a novel
MIM method, which focuses more on the holistic semantics of HSIs to recover
Yb and β̂b is only regarded as a latent variable.



6 X. X et al.

3 Experiments

3.1 Experimental Setup

Datasets We verify the effectiveness of the proposed S3R on two hyperspec-
tral histopathology image datasets, in which all histopathology samples are col-
lected from the gastroenterology department of a hospital. During the process
of capturing HSI, the light transmitted from the tissue slice was collected by the
microscope with the objective lens of 20×. More details are as follows:

PDAC Dataset: It consists of 523 HSI scenes from 36 patients, which are split
into 331 for training, 101 for validation, and 91 for testing. Noted that there
is no overlap of patients between different splits. Among all the scenes, 255 of
them belong to pancreatic ductal adenocarcinoma (PDAC), and the rest ones
are normal. The wavelength is from 450 nm to 750 nm, which ends up with 40
spectral bands for each scene. The image size per band is 512 × 612.

PLGC Dataset: Clinically, intestinal metaplasia (IM) and dysplasia (DYS) are
considered as precancerous lesions of gastric cancer (PLGC) [10] and there are
1105 HSI scenes (414 IM, 362 DYS and 329 normal cases) in the dataset. All
samples are randomly split into 661 for training, 221 for validation, and 223
for testing. The wavelength is from 470 nm to 670 nm, which ends up with 32
spectral bands for each scene. The image size per band is 512 × 512.

Implementation Details

Pre-Training: The pre-training process of all self-supervised algorithms is con-
ducted on the training set, without any data augmentation. We adopt the Im-
ageNet pre-trained model for all experiments unless otherwise specified. We set
the initial learning rate to be 10−4. The maximum training epoch for all the
models are 200, and early stop strategy is adopted when training loss no longer
drops. We use exponential learning rate decay with γ = 0.99. The learning rate,
maximum training epochs, and learning rate decay for training are the same for
other competing methods.

Downstream Task: All pre-trained models can be applied in downstream tasks
directly after adjusting the first convolutional layer. During fine tuning, appro-
priate data augmentation (e.g., scale rotation or gaussian noise) is added to
training set. We evaluate the model on validation set after every epoch, and save
the parameters when it performs best in current stage. At last, we measure the
performance on the test set. Training configurations are consistent throughout
the fine-tuning process to ensure fair comparisons. We use AdamW [13] as our
optimizer and the learning rate is 10−4 with linear decline strategy. The max-
imum number of fine-tune epoch is 70. All experiments are implemented using
Pytorch and conducted on a single NVIDIA GeForce RTX 3090.
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Table 1. Ablation study on PLGC dataset.

Image masking S3-BR S3-CR Backbone Acc.
× × × ResNet18 94.17
X × × ResNet18 93.72
X X × ResNet18 94.62
X × X ResNet18 95.07
× × × ResNet50 95.07
X × × ResNet50 94.17
X X × ResNet50 95.52
X × X ResNet50 96.41
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Fig. 3. Visualizations of β̂b. The images in figure (a) come from S3R-CR, and the
ones in figure (b) are from S3R-BR. SPI indicates spectral band index. The regression
targets from left to right are 10th and 15th band in both figures.

3.2 Ablation Study

The ablations are conducted on PLGC dataset with ResNet and the same pre-
trained setup mentioned in sect. 3.1. As shown in Table 1, we first evaluate a
straightforward regression method. Y∂b

is first fed into a vanilla ResNet back-
bone. Next, a decoder consisting of five transposed convolutional layers is im-
plemented to regress the target band Yb. This strategy only obtains 94.17%
and 95.07% accuracy with two backbones. While masking the input HSI, the
performance gets worse. This may due to the reason that directly regressing the
missing band by feeding the remaining bands to a network does not use the
inherent structure of HSIs. Thus, it leads to worse performance.

3.3 Comparison between S3R and Other Methods

In this section, we conduct comparisons between S3R and three competitors: 1)
contrastive learning (BYOL and SimSiam), 2) self-supervised models designed
for remote sensing HSIs (Conv-Deconv [14]) and SSAD [20]), and 3) an MIM-
like method [19], termed as Masked HyperSpectral Image Modeling (MHSIM).
Vanilla siamese structure based on contrastive learning (e.g., BYOL and Sim-
Siam) is designed for natural images. Thus, we use two strategies to handle the
input: randomly selecting 3 bands from HSIs or using all bands. For the MIM-like
method, we first randomly mask out a portion of the input, and then reconstruct
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Table 2. Performance comparison in Classification Accuracy (%) and Standard De-
viation on our two datasets. Scratch means training-from-scratch and IN1K denotes
ImageNet-1K. MHSIM is an MIM-like method mentioned in Sect. 3.3.

Method Dataset ResNet18 ResNet50

Scratch PDAC 78.02 (2.28) 80.22 (1.10)
IN1K pre-trained PDAC 83.52 (1.68) 85.71 (1.68)
BYOL [9] (3 bands) PDAC 82.42 (1.68) 86.81 (2.28)
BYOL [9] (40 bands) PDAC 83.52 (1.68) 85.71 (1.68)
SimSiam [4] (3 bands) PDAC 86.81 (1.10) 86.81 (1.68)
SimSiam [4] (40 bands) PDAC 85.71 (1.67) 87.91 (1.27)
SSAD [20] PDAC 80.22 (2.29) 80.22 (2.20)
Conv–Deconv [14] PDAC 79.12 (1.68) 80.22 (1.68)

MHSIM PDAC 81.32 (1.10) 83.52 (0.64)
S3R-CR PDAC 91.21 (2.23) 91.21(1.68)
S3R-BR PDAC 92.31(1.10) 90.11 (1.27)

Scratch PLGC 85.20 (1.58) 84.34 (2.87)
IN1K pre-trained PLGC 93.27 (0.51) 94.62 (1.70)
BYOL [9] (3 bands) PLGC 94.62 (0.90) 95.07 (0.69)
BYOL [9] (32 bands) PLGC 94.62 (0.26) 94.17 (0.52)
SimSiam [4] (3 bands) PLGC 94.62 (0.63) 95.07 (0.90)
SimSiam [4] (32 bands) PLGC 93.72 (0.69) 92.38 (0.51)
SSAD [20] PLGC 92.38 (2.99) 91.03 (0.68)
Conv–Deconv [14] PLGC 90.13 (0.93) 90.13 (0.45)

MHSIM PLGC 93.27 (1.44) 94.17 (0.52)
S3R-CR PLGC 95.07(0.21) 96.41(0.51)
S3R-BR PLGC 94.62 (0.42) 95.52 (0.26)

the missing pixels. Noted that DINO [2] and other transformer-based methods
[5] need to be trained on large scale datasets, such as ImageNet. Our dataset con-
tains only hundreds of HSIs. Moreover, due to the lack of computing resources,
the batch size for training DINO is 25, which is far from enough. Thus, it is not
suitable to compare with transformer-based self-supervised learning methods.

As shown in Table 2, our S3R performs significantly better than MHSIM
and other contrastive learning based methods. In particular, on PDAC dataset,
S3R-BR outperforms BYOL and SimSiam by 8.79% and 5.5% in classification ac-
curacy with the ResNet18 backbone. On PLGC dataset, S3R-CR with ResNet50
backbone achieves best results. We can observe that, the performance of MH-
SIM is close to ImageNet pre-training, which is much lower than ours. This
may caused by information leakage from CNN architecture in MIM method [7].
Restricted by computing resources, contrastive learning based methods require
far more pre-training time (more than 8 minutes per epoch on PLGC) than
S3R (about 2 minutes per epoch on PLGC), even with 3-band image as input.
Thus, our proposed method can effectively help improve the performance in HSI
classification task with lower cost.

We also visualize β̂b in Fig. 3 to further explore our method. We can see
that, in Fig. 3 (a), with the coefficient regression, β̂b exhibits a Gaussian-like
distribution, which means restoring bth band (peak area in the figure) will be
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more dependent on its nearby bands. This may force the model to focus more
on the inherent structures of HSIs. As shown in Fig. 3 (b), β̂b learned as latent
variable does not present a similar distribution, which illustrates that using pixel-
level band regression as the target makes the encoder to extract features by the
holistic semantics rather than detailed morphologies.

4 Conclusion

We first attempt to address the problem of self-supervised pre-training for hyper-
spectral histopathology image classification. We present self-supervised spectral
regression (S3R), by exploring the low rankness in the spectral domain of an HSI.
We assume one spectral band can be approximately represented by the linear
combination of the remaining bands. Our S3R forces the network to understand
the inherent structures of HSIs. Intensive experiments are conducted on two hy-
perspectral histopathology image datasets. Experimental results show that the
superiority of the proposed S3R lies in both performance and training efficiency,
compared with state-of-the-art self-supervised methods in computer vision.
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Natural Science Foundation under Grant 21ZR1420800.
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