Skip to main content

Multidimensional Hypergraph on Delineated Retinal Features for Pathological Myopia Task

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Vision-threatening pathological myopia presents several lesions affecting various retinal anatomical structures. Detection approaches, however, either focus on one anatomical feature or are not intentional. This study uses hypergraph learning to modulate delineated retinal anatomical features from fundus images and capitalize on hidden associations between them. Experiments are conducted to assess prediction performance when targeting a particular anatomical trait versus using a mixture of select anatomical features, and in comparison to a ResNet34-based convolutional neural network classifier. Results indicate better prediction with hypergraph learning on a mix of the delineated features (F1 score \(89.75\%\), AUC score \(95.39\%\)). A choroid tessellation segmentation method is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016). https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  MATH  Google Scholar 

  2. Cen, L.P., et al.: Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat. Commun. 12(1), 4828 (2021). https://doi.org/10.1038/s41467-021-25138-w, https://www.nature.com/articles/s41467-021-25138-w

  3. Dai, S., Chen, L., Lei, T., Zhou, C., Wen, Y.: Automatic detection of pathological myopia and high myopia on fundus images. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), London, United Kingdom, pp. 1–6. IEEE, July 2020. https://doi.org/10.1109/ICME46284.2020.9102787, https://ieeexplore.ieee.org/document/9102787/

  4. Devda, J., Eswari, R.: Pathological myopia image analysis using deep learning. Procedia Comput. Sci. 165, 239–244 (2019). https://doi.org/10.1016/j.procs.2020.01.084. https://linkinghub.elsevier.com/retrieve/pii/S1877050920300922

  5. Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., Zou, C.: Hypergraph learning: methods and practices. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2548–2566 (2020). https://doi.org/10.1109/TPAMI.2020.3039374

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  7. Hoang, Q.V., Chua, J., Ang, M., Schmetterer, L.: Imaging in myopia. In: Ang, M., Wong, T.Y. (eds.) Updates on Myopia, pp. 219–239. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8491-2_10

    Chapter  Google Scholar 

  8. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016). https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  Google Scholar 

  9. Komuku, Y., et al.: Choroidal thickness estimation from colour fundus photographs by adaptive binarisation and deep learning, according to central serous chorioretinopathy status. Sci. Rep. 10(1), 5640 (2020). https://doi.org/10.1038/s41598-020-62347-7, https://www.nature.com/articles/s41598-020-62347-7

  10. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021). https://doi.org/10.1016/j.media.2021.101971, https://www.sciencedirect.com/science/article/pii/S1361841521000177

  11. Liu, J., et al.: Detection of pathological myopia by PAMELA with texture-based features through an SVM approach. J. Healthc. Eng. 1(1), 1–12 (2010). https://doi.org/10.1260/2040-2295.1.1.1, http://www.hindawi.com/journals/jhe/2010/657574/

  12. Ohno-Matsui, K., et al.: META-analysis for pathologic myopia (META-PM) study group: international photographic classification and grading system for myopic maculopathy. Am. J. Ophthalmol. 159(5), 877.e7–883.e7 (2015). https://doi.org/10.1016/j.ajo.2015.01.022

  13. Sivaswamy, J., Chakravarty, A., Joshi, G.D., Syed, T.A.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Papers 2, 1004 (2015). https://www.semanticscholar.org/paper/A-Comprehensive-Retinal-Image-Dataset-for-the-of-Sivaswamy-Chakravarty/04b45aeaa59a19340652ad28d650429054d3e7fd

  14. Sivaswamy, J., Krishnadas, S.R., Datt Joshi, G., Jain, M., Syed Tabish, A.U.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56 (2014). https://doi.org/10.1109/ISBI.2014.6867807

  15. Terasaki, H., et al.: Location of tessellations in ocular fundus and their associations with optic disc tilt, optic disc area, and axial length in young healthy eyes. PLOS ONE 11(6), e0156842 (2016). https://doi.org/10.1371/journal.pone.0156842, https://dx.plos.org/10.1371/journal.pone.0156842

  16. Wolf, M.M., Klinvex, A.M., Dunlavy, D.M.: Advantages to modeling relational data using hypergraphs versus graphs. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7, September 2016. https://doi.org/10.1109/HPEC.2016.7761624

  17. Xia, F., et al.: Graph learning: a survey. IEEE Trans. Artif. Intell. 2(2), 109–127 (2021). https://doi.org/10.1109/TAI.2021.3076021

    Article  Google Scholar 

  18. Yan, Y.N., Wang, Y.X., Xu, L., Xu, J., Wei, W.B., Jonas, J.B.: Fundus tessellation: prevalence and associated factors: the Beijing eye study 2011. Ophthalmology 122(9), 1873–1880 (2015). https://doi.org/10.1016/j.ophtha.2015.05.031

    Article  Google Scholar 

  19. Yan, Y.N., et al.: Ten-year progression of myopic maculopathy: the Beijing eye study 2001–2011. Ophthalmology 125(8), 1253–1263 (2018). https://doi.org/10.1016/j.ophtha.2018.01.035

    Article  Google Scholar 

  20. Zhang, X.M., Liang, L., Liu, L., Tang, M.J.: Graph neural networks and their current applications in bioinformatics. Front. Genet. 12, 1073 (2021). https://doi.org/10.3389/fgene.2021.690049, https://www.frontiersin.org/article/10.3389/fgene.2021.690049

  21. Zhang, Z., et al.: Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLOS ONE 8(6), e65736 (2013). https://doi.org/10.1371/journal.pone.0065736, https://dx.plos.org/10.1371/journal.pone.0065736

Download references

Acknowledgements

This work was supported in part by Science, Technology, Innovation Commission of Shenzhen Municipality (JSGG20191129110812708; JSGG20200225150707332; WDZC20200820173710001; JCYJ20190809180003689), National Natural Science Foundation of China (31970752), Shenzhen Bay Laboratory Open Funding (SZBL2020090501004), China Postdoctoral Science Foundation (2020M680023), and General Administration of Customs of the People’s Republic of China (2021HK007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiwu Qin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Githinji, B. et al. (2022). Multidimensional Hypergraph on Delineated Retinal Features for Pathological Myopia Task. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics