Skip to main content

Y-Net: A Spatiospectral Dual-Encoder Network for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral domain features and combining them with spatial domain features. In this work, we present Y-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was \(13\%\) on the fluid segmentation dice score and \(1.9\%\) on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance. Code: github.com/azadef/ynet

A. Farshad and Y. Yeganeh—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  2. Chiu, S.J., Allingham, M.J., Mettu, P.S., Cousins, S.W., Izatt, J.A., Farsiu, S.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Express Biomed. Opt. (2015)

    Google Scholar 

  3. Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Express Opt. (2010)

    Google Scholar 

  4. Duan, W., et al.: A generative model for OCT retinal layer segmentation by groupwise curve alignment. IEEE Access (2018)

    Google Scholar 

  5. Fang, L., Cunefare, D., Wang, C., Guymer, R., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express (2017)

    Google Scholar 

  6. Feng, S., et al.: CPFNet: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imaging 39, 3008–3018 (2020)

    Google Scholar 

  7. He, Y., et al.: Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks (2018)

    Google Scholar 

  8. He, Y., et al.: Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT. Express Biomed. Opt. (2019)

    Google Scholar 

  9. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  10. He, Y., et al.: Towards topological correct segmentation of macular OCT from cascaded FCNs. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_23

    Chapter  Google Scholar 

  11. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  12. Kiaee, F., Fahimi, H., Rabbani, H.: Intra-retinal layer segmentation of optical coherence tomography using 3D fully convolutional networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP) (2018)

    Google Scholar 

  13. Kugelman, J., et al.: Automatic choroidal segmentation in OCT images using supervised deep learning methods. Sci. Rep. 9, 1–13 (2019)

    Google Scholar 

  14. Kugelman, J., Alonso-Caneiro, D., Read, S., Vincent, S., Collins, M.: Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search. Biomed. Opt. Express 9, 5759–5777 (2018)

    Google Scholar 

  15. Li, J., et al.: Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary oct images. Biomed. Opt. Express 12, 2204-2220 (2021)

    Google Scholar 

  16. Li, Q., et al.: DeepRetina: layer segmentation of retina in OCT images using deep learning. Transl. Vis. Sci. Technol. 9, 61 (2020)

    Google Scholar 

  17. Liu, W., Sun, Y., Ji, Q.: MDAN-UNet: multi-scale and dual attention enhanced nested U-Net architecture for segmentation of optical coherence tomography images. Algorithms 13, 60 (2020)

    Google Scholar 

  18. Maier, H., Faghihroohi, S., Navab, N.: A line to align: deep dynamic time warping for retinal OCT segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2021)

    Google Scholar 

  19. Mohammed, A., Yildirim, S., Farup, I., Pedersen, M., Hovde, Ø.: Y-Net: a deep convolutional neural network for polyp detection. arXiv preprint arXiv:1806.01907 (2018)

  20. Nair, V., Chatterjee, M., Tavakoli, N., Namin, A., Snoeyink, C.: Optimizing CNN using fast Fourier transformation for object recognition (2020)

    Google Scholar 

  21. Orlando, J.I., et al.: U2-Net: a Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)

    Google Scholar 

  22. Pekala, M., Joshi, N., Liu, T.A., Bressler, N.M., DeBuc, D.C., Burlina, P.: Deep learning based retinal OCT segmentation. Comput. Biol. Med. 114, 103445 (2019)

    Google Scholar 

  23. Rashno, A., et al.: Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: kernel graph cut in neutrosophic domain. PLoS ONE 12(10), e0186949 (2017)

    Article  Google Scholar 

  24. Guru Pradeep Reddy, T., Ashritha, K.S., Prajwala, T.M., Girish, G.N., Kothari, A.R., Koolagudi, S.G., Rajan, J.: Retinal-layer segmentation using dilated convolutions. In: Chaudhuri, B.B., Nakagawa, M., Khanna, P., Kumar, S. (eds.) Proceedings of 3rd International Conference on Computer Vision and Image Processing. AISC, vol. 1022, pp. 279–292. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9088-4_24

    Chapter  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8, 3627–3642 (2017)

    Google Scholar 

  27. Schmitt, J.M., Xiang, S., Yung, K.M.: Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)

    Article  Google Scholar 

  28. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., Arbel, T., Carneiro, G., Syeda-Mahmood, T., Tavares, J.M.R.S., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., Nascimento, J.C., Cardoso, J.S., Belagiannis, V., Lu, Z. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  29. Suvorov, R., : Resolution-robust large mask inpainting with Fourier convolutions. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2022)

    Google Scholar 

  30. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019)

    Google Scholar 

  31. Tran, A., Weiss, J., Albarqouni, S., Faghi Roohi, S., Navab, N.: Retinal layer segmentation reformulated as OCT language processing. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 694–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_67

    Chapter  Google Scholar 

  32. Virgili, G., et al.: Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. (2015)

    Google Scholar 

  33. Wei, H., Peng, P.: The segmentation of retinal layer and fluid in SD-OCT images using mutex dice loss based fully convolutional networks. IEEE Access 8, 60929–60939 (2020)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the Munich Center for Machine Learning (MCML) with funding from the Bundesministerium für Bildung und Forschung (BMBF) under the project 01IS18036B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Farshad .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 88 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farshad, A., Yeganeh, Y., Gehlbach, P., Navab, N. (2022). Y-Net: A Spatiospectral Dual-Encoder Network for Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics