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Abstract. The assessment of general movements (GMs) in infants is
a useful tool in the early diagnosis of neurodevelopmental disorders.
However, its evaluation in clinical practice relies on visual inspection
by experts, and an automated solution is eagerly awaited. Recently,
video-based GMs classification has attracted attention, but this approach
would be strongly affected by irrelevant information, such as background
clutter in the video. Furthermore, for reliability, it is necessary to prop-
erly extract the spatiotemporal features of infants during GMs. In this
study, we propose an automated GMs classification method, which con-
sists of preprocessing networks that remove unnecessary background in-
formation from GMs videos and adjust the infant’s body position, and
a subsequent motion classification network based on a two-stream struc-
ture. The proposed method can efficiently extract the essential spa-
tiotemporal features for GMs classification while preventing overfitting
to irrelevant information for different recording environments. We vali-
dated the proposed method using videos obtained from 100 infants. The
experimental results demonstrate that the proposed method outperforms
several baseline models and the existing methods.

Keywords: General movements · Infant · Motion classification · Spa-
tiotemporal fusion · Two-stream network.

1 Introduction

Neurodevelopmental disorders (NDs) are impairments of brain function and ner-
vous system development. Patients with NDs may experience real-life difficulties
due to biases and problems in cognition, movement, social skills, and atten-
tion. Meanwhile, the brain is capable of modifying the structure and function of
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the central nervous system, known as plasticity, and the younger the brain, the
greater the plasticity. Therefore, early detection of the signs of NDs followed by
effective intervention is crucial.

General movements (GMs) assessment is one of the most predictive and valid
methods for early detection of NDs [9, 19]. GMs are spontaneous movements
observed during early infancy that reflect the state of the central nervous system.
In general, experts observe video recordings of infants and assess the quality of
GMs, especially abnormalities in movements or the lack of specific movement
patterns. Qualitative abnormalities in GMs are closely related to the risk of
cerebral palsy and various NDs [3,12]. However, GMs assessment relies on visual
inspection, which requires a high level of expertise and places a heavy burden
on experts because of the need for prolonged observation; thus, an automated
solution for GMs classification is eagerly awaited.

Recently, automated classification of GMs based on video recognition has
attracted significant attention [1,2,17,18,22,26]. In this approach, the following
is important. (i) Separation of infant and irrelevant information: The cost of
GMs recording in a medical setting is very high, and it is not easy to obtain
a large dataset. Additionally, the number of high-risk infants with abnormal
GMs is generally small and often concentrated in specific medical institutions,
which can lead to bias in the recording environment depending on the types of
GMs. The use of these recordings possesses the risk of overfitting the recognition
model to irrelevant information, such as background clutter (e.g., wrinkles in
the sheets or bed frame) and differences in the relative body sizes in the videos.
(ii) Appropriate extraction of spatiotemporal features: Experts assess GMs by
comprehensively evaluating the infant’s spatial features (appearance) and their
temporal evolution (movement). Temporal features such as motor intensity and
velocity would be the most important factors characterizing GMs, and abnormal
GMs lack fluency and complexity [8]. Spatial features such as the body shape and
posture may also contribute to the reliability of GMs assessment [14]. Therefore,
if we can extract and integrate the effective spatial and temporal components
from a video while removing irrelevant visual artifacts, an accurate and reliable
recognition architecture for GMs classification can be developed.

In this study, we propose an automated GMs classification method that can
remove irrelevant information from videos and efficiently learn the spatiotem-
poral features of infants during spontaneous movements. The proposed method
consists of preprocessing networks and a motion classification network. First,
the preprocessing networks receive the measured video and extract only the in-
fant’s body area from each frame using the mask obtained by salient object
detection. The relative size and angle of the infant’s body in the video are then
unified among different individuals utilizing the joint coordinates obtained from
the pose estimation model. Subsequently, we construct a single-frame image and
stacked multi-frame optical flow from the preprocessed video, and the motion
classification network with a two-stream architecture extracts temporal and spa-
tial features to predict the types of GMs.

The main contributions of this study are as follows:



Automated Classification of General Movements in Infants 3

– We introduce preprocessing networks to remove irrelevant information from
the videos automatically, thereby preventing overfitting to non-essential el-
ements for GMs classification.

– We introduce a motion classification network based on a two-stream archi-
tecture. By fusing a spatial stream with a single-frame image and a temporal
stream with a multi-frame optical flow, this network can efficiently learn the
spatiotemporal features that characterize the GMs.

2 Related work

GMs are whole-body spontaneous movements that appear 8–9 weeks after fertil-
ization and are observed until 15–20 weeks of corrected age, giving an impression
of fluency and grace [9, 19]. These movements are generated by a central pat-
tern generator that is believed to reside between the brainstem and spinal cord
and reflect the state of the infant’s nervous system. Writhing movements (WMs)
observed in the post-term period are characterized by elliptical movements of
the limbs, sometimes with large extensions of the upper limbs [9]. At the post-
term ages of 6–9 weeks, WMs gradually disappear and fidgety movements (FMs)
emerge, in which the head, trunk, and limbs move in all directions in tiny move-
ments [20]. In contrast, movements that are absent or qualitatively different from
normal movements are considered abnormal GMs. For example, poor repertoire
GMs (PR) are classified if the sequence of successive movement components is
monotonous, and the intensity, velocity, and range of motion lack the normal
variability as seen in WMs [8]. Qualitative abnormalities of these GMs are a
good predictor of cerebral palsy, autism spectrum disorders, and delayed cogni-
tive and language development [3, 8].

Video-based GMs classification methods that do not interfere with infants’
natural movements have been studied to develop automated early screening tools
for NDs. Various methods have been developed to design features of spontaneous
movements in infants based on image processing [16,24], and some of these meth-
ods have been applied to GMs classification [1, 2, 26]. However, these feature
engineering-based approaches have difficulty in comprehensively capturing the
discriminative features specific to GMs classification. Recently, the automatic
extraction of spatiotemporal features that characterize GMs based on deep neu-
ral networks, including a convolutional neural network (CNN)-based method [22]
and a combination of pose estimation and attention mechanisms [18], has been
shown to be effective. These video-based methods, however, involve the problem
of being strongly affected by irrelevant information, such as background clutter
and relative positions of the infant’s body. The pose-based approach [5,18] may
mitigate this problem, but its performance depends on the accuracy of the pose
estimation algorithm. Therefore, we propose a video-based GMs classification
method that can remove irrelevant, distracting information from the video and
learn spatial and temporal features based on a two-stream architecture to extract
effective features related to GMs.
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Fig. 1. Overview of the proposed GMs classification method. The abbreviations GAP
and CONV 1×1 denote global average pooling and pointwise convolution, respectively.

3 Proposed GMs classification method

Fig. 1 shows an overview of the proposed method. The proposed method consists
of the preprocessing networks and motion classification network. The preprocess-
ing networks extract the infant’s body area and adjust the relative body size and
position in the image to remove the effects of visual artifacts. The motion clas-
sification network predicts the types of GMs based on a two-stream architecture
to efficiently extract the spatial and temporal features of infants during GMs.

3.1 Preprocessing networks

In general, video recording of GMs is performed using a single RGB camera fixed
above the bed to capture the movements of an infant lying supine, which has
two difficulties. First, the video contains irrelevant information other than the
infant’s body, such as wrinkles in sheets, the bed frame, and the floor. Second,
the relative scale and orientation of the infant with respect to the camera may
differ for each recording period. It is difficult to completely standardize these
conditions among different medical institutions. In the preprocessing networks,
the former problem is solved by a body area extractor, and the latter problem
is solved by a body position adjuster.

Body area extractor separates the infant’s body and background informa-
tion. We use U2-Net [21] pretrained on the DUST-TR dataset, which has shown
good segmentation results for various tasks. We apply the segmentation based
on U2-Net for each frame and extract the infant’s body by masking the output
saliency maps to the original video frames. Body position adjuster unifies the
scale and orientation of the infant across different videos. This adjuster utilizes
OpenPose [4], a pose estimation network. Out of the 18 joints output from this
network, we use four coordinates for both shoulders and hips. The vector passing
through the midpoints of both shoulders and hips is defined as the approximate
body-axis direction and is used for adjustment.

The adjustment is performed in the following two steps. In the first step,
pose estimation is applied to the first frame of the video and obtain the angle of
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the body axis relative to the vertical direction of the video. We then rotate all
the video frames using this angle to roughly align the body orientation. In the
second step, pose estimation is applied again to each frame of the rotated video,
and the following three quantities at frame t are calculated: the angle θt of the
body axis, center coordinate ct of the line segment connecting the midpoints
of both shoulders and hips, and length lt of the line segment. To consistently
adjust the video frames, the averages of the quartile range of the above quantities
are calculated for every frame and defined as θ̄, c̄, and l̄, respectively. The body
orientation is readjusted by rotating all the frames using θ̄, and each video frame
is cropped or uncropped with a square such that c̄ coincides with the center
position of the video frame after rotation. We set the length of one side of the
square to R = 3l̄/α, where α > 0 is an arbitrary parameter that fits the infant’s
body in the video at a reasonable scale. Finally, all video frames are resized by
W ×H because R has a different value for each video.

3.2 Motion classification network with two-stream architecture

We construct the motion classification network based on the two-stream ap-
proach [11, 23] consisting of two CNNs: spatial and temporal streams. The fea-
ture maps in the output layer of each stream are fused, and the softmax scores
are finally calculated through the fully connected layer.

The spatial and temporal streams receive a single-frame image and a stacked
multi-frame optical flow, respectively. Here, the optical flow is a set of displace-
ment vector fields between consecutive pairs of frames, t and t + 1, reflecting
the infant’s motion information between frames. Dense optical flow is calculated
from each frame of the RGB video xt ∈ RW×H×3 output from the preprocess-
ing networks using the Farneback method [10], and the horizontal and vertical
components of the vector field, dh

t ∈ RW×H and dv
t ∈ RW×H , are extracted.

To represent motion across a sequence of frames, the input of each stream
is given by a temporal chunk consisting of L consecutive frames. Each chunk is
separated by τ frames. For the n-th chunk, the input of the spatial stream, xs

n,
is a single-frame image at the center of the chunk, as follows:

xs
n = x(n−1)τ+L

2 −1
. (1)

The input of the temporal stream, xt
n ∈ RW×H×2L, is constructed by stacking

the flow components dh
t and dv

t in the chunk along the channel direction:

xt
n(2k − 1) = dh

(n−1)τ+k−1, xt
n(2k) = dv

(n−1)τ+k−1, (2)

where k = 1, 2, . . . , L and xt
n(c) is the explicit element of xt

n in channel c.
For both streams, we use CNNs pretrained on a large-scale dataset. Each

CNN stream is combined after the activation function of the final convolutional
layer. Because the input of the temporal stream has a channel size of 2L, the
first layer of the temporal CNN is modified to fit the dimensionality.

The feature maps output from the spatial and temporal streams, ys
n ∈

RW ′×H′×D and yt
n ∈ RW ′×H′×D, are combined to create the final feature vector,
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where W ′, H ′, and D are the width, height, and the number of channels of the
respective feature maps. First, we stack the two feature maps at the same spa-
tial locations across the feature channels to form ycat

n ∈ RW ′×H′×2D. We then
transform ycat

n by pointwise convolution using the filters f ∈ R1×1×2D×D and
biases b ∈ RD to learn the correspondence between the two feature maps:

ỹn = ycat
n ∗ f + b, (3)

where ∗ denotes the operator for convolution. After global average pooling is
applied to the fused feature map ỹn, the prediction score is calculated via a
fully connected layer and softmax activation. Because the prediction score is
calculated for each temporal chunk, the video-wise prediction of the GMs class
is finally determined by averaging the scores over all the chunks in the video.

4 Experiments

To evaluate the validity of the proposed method, we conducted GMs classi-
fication experiments. In the experiments, we used a dataset of videos of in-
fants captured in medical institutions at Japan and Italy. The aim of the study
was fully explained to each infant’s parents, and informed consent was obtained
before participation in the experiment. All experiments were approved by the
Ethics Committee of the Gaslini Pediatric Hospital and Hiroshima University
(registration numbers: IGGPM01-2013 and E-1150-2). Our code is available at
https://github.com/uoNuM/two-stream-gma.

Dataset and implementation details: The dataset consisted of videos ob-
tained from 100 infants; each video was captured at a frame rate of 30 fps and
resolution of 1280× 720 pixels. The length of the original videos ranged from 60
to 210 s, and we clipped consecutive 60 s frames during GMs from each original
video, avoiding periods of sleep and crying. The infants’ gestational ages ranged
from 210 to 295 days, and their birth weight range was from 1400 to 3985 g.
GMs labels were attached to each video based on annotations by well-trained
experts with GMs evaluation licenses. The resulting labels are as follows: WMs,
37; FMs, 36; and PR, 27. Here, WMs and FMs are normal GMs, and PR is
abnormal. To evaluate the classification performance, we performed a stratified
infant-wise 5-fold cross-validation on the dataset.

We used ResNet-50 [13] that was pretrained on the ImageNet dataset for
each CNN stream. Accordingly, the resize in the body position adjuster was set
to W = H = 224, and the body scale parameter was set to α = 0.8. Each video
was downsampled to 6 fps and the length and interval of the temporal chunks
were set to L = τ = 30. The entire motion classification network was fine-tuned
on our GMs dataset using the AdamW [15] optimizer, with a learning rate of
10−5. During fine-tuning, we performed horizontal flipping data augmentation,
which involved the inversion of the horizontal component of the optical flow.

https://github.com/uoNuM/two-stream-gma
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Table 1. Quantitative evaluation results (mean ± standard deviation)

Method Accuracy MCC Precision Recall

Existing method
Tsuji et al. [26] 0.556± 0.010 0.331± 0.016 0.556± 0.005 0.539± 0.013
STAM [18] 0.640± 0.032 0.408± 0.044 0.646± 0.046 0.427± 0.034

Baseline
CNN + LSTM [7] 0.694± 0.031 0.563± 0.051 0.621± 0.057 0.659± 0.035
C3D [25] 0.700± 0.009 0.556± 0.016 0.684± 0.012 0.678± 0.010

Ours
Only spatial 0.742± 0.029 0.628± 0.039 0.750± 0.022 0.723± 0.026
Only temporal 0.696± 0.019 0.551± 0.033 0.693± 0.030 0.670± 0.018
Two-stream fusion 0.752± 0.013 0.647± 0.015 0.780± 0.010 0.737± 0.011

Experimental conditions: We compared the proposed method with two ex-
isting methods for GMs classification. One is an image processing-based sys-
tem proposed by Tsuji et al. that uses 25 domain-dependent features calcu-
lated from background subtractions and inter-frame differences [26]. The other
is STAM [18], which is a state-of-the-art method for infant movement classifica-
tion using graph neural networks with features obtained from pose estimation as
input. Both existing methods were retrained from scratch using our GMs dataset.
As baselines, two types of action recognition networks, CNN + LSTM [7] and
C3D [25], were used instead of the motion classification network of the proposed
method. The preprocessing networks were also applied to these baselines. We
used ResNet-50 pretrained on ImageNet for the former CNN and the latter was
pretrained on the Sports-M1 dataset. Both were finetuned in the same way as
the proposed method. In addition, we conducted an ablation study to evaluate
the effectiveness of the body area extractor and the body position adjuster in
the preprocessing networks.

We used accuracy, the Matthews correlation coefficient (MCC), precision,
and recall as performance measures. For robust results, we repeated the analysis
by changing the random seed five times and calculated the mean and standard
deviation of each measure. We did not perform statistical tests due to the small
sample size.

Results: Table 1 shows the quantitative evaluation results of each method. Our
method also shows the results of using each stream individually. The proposed
method with two-stream fusion achieves the best performance for all perfor-
mance measures. The performance decreases when the structure of the motion
classification network was changed to a single stream or a baseline. Therefore,
the network based on the two-stream architecture was effective for extracting
the spatiotemporal features of infants during GMs.

Table 2 shows the results of the ablation study. The combination of each
element of the preprocessing networks shows the best performance except for
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Table 2. Results of the ablation study for the preprocessing networks with the body
area extractor and body position adjuster (mean ± standard deviation). The absence
of X means that the corresponding element is removed from the proposed method.

Extractor Adjuster Accuracy MCC Precision Recall

0.754± 0.016 0.636± 0.024 0.760± 0.016 0.734± 0.017
X 0.734± 0.010 0.623± 0.013 0.742± 0.025 0.724± 0.012
X X 0.752± 0.013 0.647± 0.015 0.780± 0.010 0.737± 0.011
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Fig. 2. Visualization of activation maps using Grad-CAM++. The results of the pro-
posed method with the preprocessing networks are shown with two examples for each
GMs class. The rightmost column for each class is an example without the preprocess-
ing networks, corresponding to the second example with the preprocessing networks.

accuracy. Although the performance without the preprocessing networks is also
relatively high, this is because the model focuses on irrelevant information other
than the infant (as shown later in Fig. 2). Overfitting to such non-essential but
class-related components may cause ostensibly high validation performance in
the limited dataset. In fact, when only the extractor is applied, such components
are not referred, resulting in a loss of performance. In contrast, incorporating
the adjuster to unify the scale and orientation of the infant’s body enables ap-
propriate feature extraction and improves overall performance.

Fig. 2 shows some typical examples of class activation maps using Grad-
CAM++ [6]. These activation maps were calculated for each stream in the
proposed two-stream architecture. The results demonstrate that the proposed
method with the preprocessing networks adequately captures different aspects
of infants during GMs in each stream. The spatial stream focuses on the in-
fant’s overall appearance, including body shape and posture, while the temporal
stream pays more attention to the limbs, which greatly influences the impres-
sion of movement. In contrast, the proposed method without the preprocessing
networks focuses on the bed frame or floor texture, irrelevant to the infant.
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5 Conclusion

This study proposed a classification method for GMs in infants based on spa-
tiotemporal fusion. In the proposed method, we introduce preprocessing net-
works to remove irrelevant information from the video and adjust the infant’s
body position. To capture spatiotemporal feature representations of infants dur-
ing GMs, we also introduced a two-stream network with a single-frame image
and stacked optical flow as the input of each stream to classify the types of GMs.
The experimental results show that the proposed method outperforms existing
GMs classification methods and suppresses overfitting to irrelevant elements in
the video owing to the preprocessing networks.

One of the limitations of this study is that no quantitative evaluation of
the reliability of the calculated optical flows has been made, which should be
demonstrated in future work. We will also introduce a disentangle representa-
tion learning to explore the spatial and temporal features that are most strongly
associated with GMs assessment. Furthermore, we plan to extend the proposed
framework to a wider range of spontaneous movement assessments, such as lon-
gitudinal assessments.

References

1. Adde, L., Helbostad, J.L., Jensenius, A.R., Taraldsen, G., Grunewaldt, K.H.,
Støen, R.: Early prediction of cerebral palsy by computer-based video analysis
of general movements: a feasibility study. Developmental Medicine & Child Neu-
rology 52(8), 773–778 (2010)

2. Adde, L., Yang, H., Sæther, R., Jensenius, A.R., Ihlen, E., Cao, J.y., Støen, R.:
Characteristics of general movements in preterm infants assessed by computer-
based video analysis. Physiotherapy Theory and Practice 34(4), 286–292 (2018)

3. Beccaria, E., Martino, M., Briatore, E., Podestà, B., Pomero, G., Micciolo, R.,
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10. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In:
Proceedings of the Scandinavian Conference on Image Analysis. pp. 363–370.
Springer (2003)

11. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fu-
sion for video action recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 1933–1941 (2016)

12. Ferrari, F., Cioni, G., Prechtl, H.: Qualitative changes of general movements in
preterm infants with brain lesions. Early Human Development 23(3), 193–231
(1990)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 770–778 (2016)

14. Hesse, N., Pujades, S., Romero, J., Black, M.J., Bodensteiner, C., Arens, M., Hof-
mann, U.G., Tacke, U., Hadders-Algra, M., Weinberger, R., et al.: Learning an
infant body model from RGB-D data for accurate full body motion analysis. In:
Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). pp. 792–800 (2018)

15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings
of the International Conference on Learning Representations (ICLR) (2017)

16. Maggi, E., Impagliazzo, M., Minnella, A., Zanardi, N., Izzo, M., Campone, F.,
Blanchi, I., Tacchino, C., Shimatani, K., Shima, K., et al.: A new method for early
detection of infants at risk of long-term neuromotor disabilities. Gait & Posture
57, 23–24 (2017)

17. McCay, K.D., Ho, E.S., Shum, H.P., Fehringer, G., Marcroft, C., Embleton, N.D.:
Abnormal infant movements classification with deep learning on pose-based fea-
tures. IEEE Access 8, 51582–51592 (2020)

18. Nguyen-Thai, B., Le, V., Morgan, C., Badawi, N., Tran, T., Venkatesh, S.: A spatio-
temporal attention-based model for infant movement assessment from videos. IEEE
Journal of Biomedical and Health Informatics 25(10), 3911–3920 (2021)

19. Prechtl, H.F.: Qualitative changes of spontaneous movements in fetus and preterm
infant are a marker of neurological dysfunction. Early Human Development 23(3),
151–158 (1990)

20. Prechtl, H.F.: State of the art of a new functional assessment of the young nervous
system. an early predictor of cerebral palsy. Early Human Development 50(1),
1–11 (1997)

21. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-
Net: Going deeper with nested U-structure for salient object detection. Pattern
Recognition 106, 107404 (2020)

22. Schmidt, W., Regan, M., Fahey, M., Paplinski, A.: General movement assessment
by machine learning: Why is it so difficult. Journal of Medical Artificial Intelligence
2 (2019)

23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems (NIPS). pp. 568–576 (2014)



Automated Classification of General Movements in Infants 11

24. Tacchino, C., Impagliazzo, M., Maggi, E., Bertamino, M., Blanchi, I., Campone,
F., Durand, P., Fato, M., Giannoni, P., Iandolo, R., et al.: Spontaneous movements
in the newborns: A tool of quantitative video analysis of preterm babies. Computer
Methods and Programs in Biomedicine 199, 105838 (2021)

25. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3D convolutional networks. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV). pp. 4489–4497 (2015)

26. Tsuji, T., Nakashima, S., Hayashi, H., Soh, Z., Furui, A., Shibanoki, T., Shima,
K., Shimatani, K.: Markerless measurement and evaluation of general movements
in infants. Scientific Reports 10(1), 1422 (2020)


	Automated Classification of General Movements in Infants Using Two-stream Spatiotemporal Fusion Network

