Skip to main content

Local Graph Fusion of Multi-view MR Images for Knee Osteoarthritis Diagnosis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

Abstract

Magnetic resonance imaging (MRI) has become necessary in clinical diagnosis for knee osteoarthritis (OA), while deep neural networks can contribute to the computer-assisted diagnosis. Recent works prove that instead of only using a single-view MR image (e.g., sagittal), integrating multi-view MR images can boost the performance of the deep network. However, existing multi-view networks typically encode each MRI view to a feature vector, fuse the feature vectors of all views, and then derive the final output using a set of shallow computations. Such a global fusion scheme happens at a coarse granularity, which may not effectively localize the often tiny abnormality related to the onset of OA. Therefore, this paper proposes a Local Graph Fusion Network (LGF-Net), which implements graph-based representation of knee MR images and multi-view fusion for OA diagnosis. We first model the multi-view MR images to a unified knee graph. Then, the patches of the same location yet from different views are encoded to one-dimensional features and are exchanged mutually during fusing. The local fusion of the features further propagates following edges by Graph Transformer Network in the LGF-Net, which finally yields the grade of OA. The experimental results show that the proposed framework outperforms state-of-the-art methods, demonstrating the effectiveness of local graph fusion in OA diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alizai, H., et al.: Cartilage lesion score: comparison of a quantitative assessment score with established semiquantitative MR scoring systems. Radiology 271(2), 479–487 (2014)

    Article  Google Scholar 

  2. Astuto, B., et al.: Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Radiol. Artif. Intell. 3(3), e200165 (2021)

    Article  Google Scholar 

  3. Azcona, D., McGuinness, K., Smeaton, A.F.: A comparative study of existing and new deep learning methods for detecting knee injuries using the MRNet dataset. In: 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), pp. 149–155. IEEE (2020)

    Google Scholar 

  4. Belton, N., et al.: Optimising knee injury detection with spatial attention and validating localisation ability. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 71–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_6

    Chapter  Google Scholar 

  5. Bien, N., et al.: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of mrnet. PLoS Med. 15(11), e1002699 (2018)

    Article  Google Scholar 

  6. Calivà, F., Namiri, N.K., Dubreuil, M., Pedoia, V., Ozhinsky, E., Majumdar, S.: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat. Rev. Rheumatol. 18, 1–10 (2021)

    Google Scholar 

  7. Chen, S., Ma, K., Zheng, Y.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Garwood, E.R., Recht, M.P., White, L.M.: Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI. Am. J. Roentgenol. 209(3), 552–560 (2017)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Huo, J., et al.: Automatic grading assessments for knee MRI cartilage defects via self-ensembling semi-supervised learning with dual-consistency. Med. Image Anal. 80, 102508 (2022)

    Article  Google Scholar 

  12. Huo, J., et al.: A self-ensembling framework for semi-supervised knee cartilage defects assessment with dual-consistency. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 200–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_19

    Chapter  Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Jamshidi, A., Pelletier, J.P., Martel-Pelletier, J.: Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat. Rev. Rheumatol. 15(1), 49–60 (2019)

    Article  Google Scholar 

  15. Liu, F., et al.: Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol. Artif. Intell. 1(3), 180091 (2019)

    Article  Google Scholar 

  16. Liu, F., et al.: Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 289(1), 160–169 (2018)

    Article  Google Scholar 

  17. Nikolas, W., Jan, L., Carina, M., von Eisenhart-Rothe, R., Rainer, B.: Maintaining the spatial relation to improve deep-learning-assisted diagnosis for magnetic resonace imaging of the knee. Zeitschrift für Orthopädie und Unfallchirurgie 158(S 01), DKOU20-670 (2020)

    Google Scholar 

  18. Peterfy, C., Gold, G., Eckstein, F., Cicuttini, F., Dardzinski, B., Stevens, R.: MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthr. Cartil. 14, 95–111 (2006)

    Article  Google Scholar 

  19. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  20. Si, L., et al.: Knee cartilage thickness differs alongside ages: a 3-T magnetic resonance research upon 2,481 subjects via deep learning. Front. Med. 7, 1157 (2021)

    Article  Google Scholar 

  21. Suzuki, T., Hosseini, A., Li, J.S., Gill, T.J., IV., Li, G.: In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J. Biomech. 45(14), 2432–2437 (2012)

    Article  Google Scholar 

  22. Tsai, C.H., Kiryati, N., Konen, E., Eshed, I., Mayer, A.: Knee injury detection using MRI with efficiently-layered network (ELNet). In: Medical Imaging with Deep Learning, pp. 784–794. PMLR (2020)

    Google Scholar 

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR), pp. 1–12 (2017)

    Google Scholar 

  24. Zhuang, Z., et al.: Knee cartilage defect assessment by graph representation and surface convolution. arXiv preprint arXiv:2201.04318 (2022)

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2018YFC0116400), National Natural Science Foundation of China (NSFC) grants (62001292) and Interdisciplinary Program of Shanghai Jiao Tong University (YG2019QNA17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Z. et al. (2022). Local Graph Fusion of Multi-view MR Images for Knee Osteoarthritis Diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics