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Abstract. In practice, many medical datasets have an underlying tax-
onomy defined over the disease label space. However, existing classifica-
tion algorithms for medical diagnoses often assume semantically indepen-
dent labels. In this study, we aim to leverage class hierarchy with deep
learning algorithms for more accurate and reliable skin lesion recognition.
‘We propose a hyperbolic network to jointly learn image embeddings and
class prototypes. The hyperbola provably provides a space for modeling
hierarchical relations better than Euclidean geometry. Meanwhile, we re-
strict the distribution of hyperbolic prototypes with a distance matrix
which is encoded from the class hierarchy. Accordingly, the learned pro-
totypes preserve the semantic class relations in the embedding space and
we can predict label of an image by assigning its feature to the nearest
hyperbolic class prototype. We use an in-house skin lesion dataset which
consists of ~230k dermoscopic images on 65 skin diseases to verify our
method. Extensive experiments provide evidence that our model can
achieve higher accuracy with less severe classification errors compared
to that of models without considering class relations.
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1 Introduction

Recent advances in deep learning have greatly improved the accuracy of clas-
sification algorithms for medical image diagnosis. Typically, these algorithms
assume mutually exclusive and semantically independent labels . The
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Fig. 1. The proposed hyperbolic model with class hierarchy for skin lesion recognition.

classification performance is evaluated by treating all classes other than the true
class as equally wrong. However, many medical datasets have an underlying class
hierarchy defined over the label space. Accordingly, different disease categories
can be organized from general to specific in the semantic concepts. Diseases from
a same super-class often share similar clinical characteristics. Incorporating the
constraint of class relations in a diagnostic algorithm has at least two benefits.
First, a class hierarchy defines a prior knowledge on the structure of disease la-
bels. Learning model with such knowledge would facilitate the model training
and boost the performance compared with that of using semantic-agnostic la-
bels. Second, a class tree indicates the semantic similarity between each class pair
and a model can be optimized with the semantic metric to reduce the severity
of prediction errors [2l/6,8]. Take the example of a diagnostic model in dermatol-
ogy: the common non-cancerous melanocytic lesion has at least two sub-classes:
lentigo and benign nevus. Undoubtedly, mistaking a lentigo for a begin nevus is
more tolerable than of mistaking a malignant melanoma for a begin nevus. By
taking mistake severity into consideration, we can somewhat preclude models
from making a egregious diagnostic error which is crucial in deploying the model
in real world scenarios.

However, relatively few works use hierarchical class clues in the context of
medical image analysis |1,{14]. Although these methods report promising results,
they require the network architecture to be adapted for a specific hierarchy and
they neglect semantic measurements in evaluating the performance of the algo-
rithms. Besides, these models are built in Euclidean space while study [5] shows
that Fuclidean space suffer from heavy volume intersection and points arranged
with Euclidean distances would no longer be capable of persevering the struc-
ture of the original tree. By contrast, approaches with hyperbolic geometry for
modelling symbolic data have demonstrated to be more effective in representing
hierarchical relations [5}{12]. The hyperbolic space can reflect complex structural
patterns inherent in taxonomic data with a low dimensional embedding.
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In this study, we propose modelling class dependencies in the hyperbolic
space for skin lesion recognition. Our aim is to improve accuracy while reducing
the severity of classification mistakes by explicitly encoding hierarchical class
relations into hyperbolic embeddings. To this end, We first design a hyperbolic
prototype network which is capable of jointly learning image embeddings and
class prototypes in a shared hyperbolic space. Then, we guide the learning of hy-
perbolic prototypes with a distance matrix which is encoded from the given class
hierarchy. Hence, the learned prototypes preserve the semantic class relationship
in the embedding space. We can predict the label of an image by assigning its
feature to the nearest hyperbolic class prototype. Our model can be easily ap-
plied to different hierarchical image datasets without complicated architecture
modification. We verify our method on an in-house skin lesion image dataset
which consists of approximately 230k dermoscopic images organized in three-
level taxonomy of 65 skin diseases. Extensive experiments prove that our model
can achieve higher classification accuracy with less severe classification errors
than models without considering class relations. Moreover, we also conducted
an ablation study by comparing hyperbolic space trained hierarchical models to
those trained in Euclidean space.

2 Method

2.1 Hyperbolic Geometry

The hyperbolic space H" is a homogeneous, simply connected Riemannian man-
ifold with constant negative curvature. There exist five insightful models of H"
and they are conformal to the Euclidean space. Following [12]|, we use the
Poincaré ball model because it can be easily optimized with gradient-based
methods. The Poincaré ball model (]D)", gD) is defined by the manifold D" =
{x e R": c|lz|| < 1,¢ > 0} endowed with the Riemannian metric g2 = A\2¢g%,
where c denotes the curvature, \§ = ﬁ is the conformal factor and g% = I
is the Euclidean metirc tensor. The hyperbolic space has very different geomet-
ric properties than that in the Euclidean space. We introduce basic hyperbolic
operations involved in this study as following:

Poincaré Distance. The distance between two points x;,xs € D7 is calculated
as:

de (x1,%2) = %arctanh (Ve |l—x1 e x2|) (1)
(14 2c(x1,%2) + ¢ ||X2H2) x1+(1—c ||x1||2) X2

1+ 2 (1, x2) + €2 [t | [

(2)

X1 Be X2 =

Exponential map. The exponential map defines a projection from tangent
space TxDD? of a Riemannian manifold D7 to itself which enables us to map a
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vector in Euclidean space R" = TxD? to the hyperbolic manifold. The mathe-
matical definition of exponential map is given by:

expS, (v) = X @. (tanh <\/5A§‘£|V”> ﬁ]v”) 3)

where x denotes the reference point and default 0 are used if not specified.

Hyperbolic linear projection. The linear projection in hyperbolic space is
based on the Mébius matrix-vector multiplication. Let ¢ : R™ — R™ be a linear
map defined in Euclidean space. Then, for Vx € D7, if ¢) (x) # 0, the calculation
of the linear map is defined as:

1 e GOl 1 ) ¥ (x)
Be (x) = —tanh( tanh cllx 4
If we consider a bias of b € D? in the linear map, then the x in the above
equation should be replaced with the Mébius sum: x < x ®. b.

2.2 Hyperbolic prototype network for image classification

As shown in Fig. (1] the proposed hyperbolic prototype network (HPN) consists
of a backbone network, a exponential map layer, a hyperbolic linear layer and a
classification layer. First, the backbone network extracts image representations
from the Euclidean space and then the exponential map layer projects it into
the Poincaré ball. After that, we use a hyperbolic linear layer to transform the
projected hyperbolic image embeddings so that their dimensions are fitted with
that of class prototypes in the shared hyperbolic space. Finally, the classification
layer performs matching between hyperbolic image embeddings with respect to
the corresponding class prototypes.

Formally, consider a dataset A/ consists of m samples {(x;,y;)}" from K
classes. Let {aj,...,ax} be the hyperbolic prototypes for the K classes. Then,
the hyperbolic network computes probability distributions over all the class pro-
totypes for each input image as:
exp (—dc (zi, ar))

v. = k|x;) =
p(§; = klxi) S exp (—de (21, a5))

zi = 7 (expp (f (x:)) e b) (6)
where f () denotes the function of backbone network. The network can be di-
rectly optimized with the cross-entropy loss on the hyperbolic distance-based

logits:
iexp (-%dc (zi,a]-)))) (7)

=1

NVke K (5)

1 1
Lpce = m Z (Tdc (Ziaayi) + log (

i€Em

where T is a temperature factor for scaling the distance logits which is fixed as
0.1.
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Fig. 2. [llustration of class relation encoding methods. Both of the approaches produce
a matrix which indicates the dissimilarity of class pairs.

2.3 Incorporating constraint of class relations.

Hierarchical class relations encoding: Let’s assume that the label of dataset
N can be organized into a class tree H = (V,E) with h hierarchical levels,
where V and E denote nodes and edges, respectively. Each node corresponds
to a class label while an edge (u,v) € E indicates entailment relatiOIﬂ between
the node pair. We exploit two methods for encoding class relations from the
hierarchical tree #H: 1) hyperbolic class distance (HCD) encoding, and 2) low
common ancestor (LCA) class distance (LCD) encoding. Both of the methods
produce a matrix of class distance D € Rf *K which indicates the dissimilarity
between each pair of leaf-classes (see Fig. [2). For the HCD encoding, we first learn
hyperbolic representations for all class labels following and then compute
pairwise hyperbolic distances for leaf classes. Similar to , in the LCD encoding,
we directly define the distance between two classes as the height of their LCA
in the hierarchy.

Class distance guided hyperbolic prototype learning: To introduce such
class relations into class prototypes, we propose to guide the prototype learning
by constraining the distance between prototypes to be consistent with the class
distance in the D. As described by Sala et al. [13], the distortion of a mapping
between the finite metric space of hierarchical class distance D[4, j] and the
continuous metric space of prototype distance d. (a;,a;) can be defined as:

i 1 de a;, a; —DZ,
dlsto(d,D):K(K_l)ijE;#j| ( D?i,j] (4, 411 )

A low-distortion mapping means that the learned prototypes preserve well the
relations between classes defined by the D. However, achieving low-distortion
mapping requires the prototypes to be arranged in the embedding space with
the specific distance constraint, and this may conflict with the cross-entropy
loss which encourages the distance between an embedding to negative class

9 Namely, v is a sub-concept of u
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prototypes to be as large as possible. Hence, we introduce a scale factor in the
formulation of the distortion for removing the discrepancy between the scale of
the prototype distance and the hierarchical class distance:

de (ai,a;) de (ai,a;)
8= —/ T 2 9)

”;(2 D[4, 5] Hg(z D [2,]]2
The s is dynamically changed depending on the value of d and D. Then, we
obtain the following smooth surrogate of the disto® for optimization:

1 . s-dc(aia-)D[ij]>2
Liisto = ———— min ’ J . : 10
T K (K 1) 36R+ij€;i¢j( D i, j] (10)

Finally, we optimize the proposed hyperbolic network by combining Lpcg
and Lgisto- The Lpcg enables us to jointly learn hyperbolic image embeddings
and class prototypes, while the L4+, forces the class prototypes following the
semantic distribution defined by the given class hierarchy:

L =Lpce + Ldisto (11)

3 Experiment and Results

3.1 Dataset and Implementation

We evaluate the proposed method on an in-house dataset. We denote the dataset
as molemap™ as it is bigger and more diverse compared to the first version used
in |7]. The molemap™ includes 235,268 tele-dermatology verified dermoscopic
images organized in three-level tree-structured taxonomy of 65 skin conditions
(shown in Fig. [3). We split the dataset into training, validation and testing
set with a ratio of 7:1:2. The standard data augmentation techniques such as
random resized cropping, colour transformation, and flipping are equally used
in all experiments. Each dermoscopic image is resized to a fixed input size of
320x320. We use ReseNet-34 9] as the backbone for all models and train them
using ADAM optimizer with a batch size of 100 and a training epoch of 45.
The initial learning rates is set to 1x107° and 3x10~* for the backbone layers
and new added layers, respectively. We adjust learning rate with a step decay
schedule. The decay factor is set to 0.1 and associated with a decay epoch of 15.

3.2 Evaluation metrics

We consider accuracy and two semantic measures for assessing performance of
models: Mistake severity (MS): Inspired by [2], we measure the severity of
a mis-classification with the height of the LCA between the class of incorrect
prediction and the true class. Hierarchical distance (HD) of of top-kﬂ: This
metric computes the mean hierarchical class distance between the true class and
the top-k predicted classes. The measurement is meaningful for assessing the
reliance of a model in assisting clinicians making diagnosis.

10 We set k as 5 in this study.
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Fig. 3. Structure of the skin disease taxonomy.

3.3 Quantitative Results

Ablation study: Here, we give ablation results of our model to illustrate how
different settings affect the final performance. Fig. 4] (a) shows the effect of cur-
vature which determines the distortion of the hyperbolic ball. It can be seen
that a small ¢ produces better performance and the accuracy drops 1.6% when
increasing ¢ from 0.01 to 1. As demonstrated by [10], this is because large curva-
tures could bring numerical instability in hyperbolic operations. Therefore, we
set ¢ as 0.01 in the following experiments. Then, we report accuracy by varying
the hyperbolic dimension in Fig. [4] (b). It can be noted that the model with di-
mension of 320 achieves highest accuracy of 60.94%. However, the performance
gap is not significant compared to other models with lower dimension settings.
Even reducing the dimension from 320 to 16, the accuracy only decreases ~0.5%.
This result verifies the efficiency of hyperbolic embeddings in representing imag-
ing data. In Table [T} we compare the performance of the HPN trained with and
without class hierarchy. It can be seen that both the HCD and LCD encoding
boost the performance compared to the baseline hyperbolic network. Among
them, the HPN trained with the class relation matrix derived from LCA en-
coding gives best accuracy and semantic metrics. Since our dataset is highly
imbalanced, in Fig. 4] (c), we further give the detailed performance improvement
on head classes, middle class and tail classes separately. When using the class
hierarchy, the accuracy increases 0.9% for tail classes which is higher than that
of 0.2% for both middle and head classes.

Comparative study: We then compare our model with that of models trained
with and without class hierarchy in Euclidean space and hyperbolic space, re-
spectively. The details of those model are described in the Appendix. From Table
we can observe that all class-hierarchy trained models apart from the method
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Table 1. Comparison of the proposed model with other methods.

Semantic Metrics

Models ‘Class hierarchy Accuracy\Mistake severity [Mean HD@5
Baseline CNN X 58.47 1.95 1.65
Soft-label [2] v/ 58.88 1.95 1.46

Multi-branch CNN [16] v 60.28 1.92 1.61

Fixed-hyperbolic | v 56.87 1.85 1.40

embeddings

Buclidean 6r / (LCD) 60.76 1.90 1.55
prototype net

Hyperboli X 60.68 1.91 1.63
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Fig. 5. Pairwise class prototype distance learned with and without class hierarchy.

with fixed-hyperbolic embeddings show higher accuracy compared to the base-
line CNN. While the semantic metric of all models learned with class hierarchy
are better than that of the baseline CNN. Certainly, this result highlights the
value of incorporating class relations for skin lesion recognition. For the fixed-
hyperbolic embeddings that achieves best semantic measurements with the low-
est accuracy, we attribute this discrepancy to the softmax-based cross-entropy
optimization. Because it is hard to minimize the loss on the probability distribu-
tion of distance (eq.) between an image representation and fixed prototypes
with a semantic distance constraint. Noticeably, when using class hierarchy, our
model outperforms the Euclidean prototype net which has best performance
among all Euclidean models.

3.4 Visualization results

In Fig. |5l we illustrate the distance matrix for class prototypes learned by our
hyperbolic network and the Euclidean prototype network. It can be note that
there is no clear relation for our model trained without using hierarchical class
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Fig. 6. Examples of predictions results from our model trained with and without the
class hierarchy. (a)-(c) are incorrectly predicted samples by both model. (d)-(f) are
samples correctly predicted by hierarchy-aware HPN but mis-classified by hierarchy-
agnostic HPN (best viewed in zoom in mode).

clues. By contrast, both the class-hierarchy regularized models shows a seman-
tic connection in the prototypical class distance matrix. From Fig. [5(d) and
Fig. e), we can see the pairwise prototypes distance of the hyperbolic network
is closer to the ground truth class distance compare to that of Euclidean model.
We then give prediction results for individual samples in Fig. [6] It can be seen
the hierarchy-aware HPN gives more reasonable predictions compared with the
hierarchy-agnostic HPN.

4 Conclusion

In this study, we present a hyperbolic network with class hierarchy for skin lesion
recognition. Our model is capable of jointly learning hyperbolic image embed-
dings and class prototypes while preserve class relations from the hierarchy. We
evaluate the proposed method on a large-scale in-house skin lesion dataset by
reporting both accuracy and semantic measurements derived from the class tree.
Experiments demonstrate that our model can capture well class relations and
the hyperbolic network outperforms other Euclidean models.
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