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Abstract. Detection of abnormalities within the inner ear is a challeng-
ing task that, if automated, could provide support for the diagnosis and
clinical management of various otological disorders. Inner ear malforma-
tions are rare and present great anatomical variation, which challenges
the design of deep learning frameworks to automate their detection. We
propose a framework for inner ear abnormality detection, based on a deep
reinforcement learning model for landmark detection trained in norma-
tive data only. We derive two abnormality measurements: the first is
based on the variability of the predicted configuration of the landmarks
in a subspace formed by the point distribution model of the normative
landmarks using Procrustes shape alignment and Principal Component
Analysis projection. The second measurement is based on the distribu-
tion of the predicted Q-values of the model for the last ten states before
the landmarks are located. We demonstrate an outstanding performance
for this implementation on both an artificial (0.96 AUC) and a real clin-
ical CT dataset of various malformations of the inner ear (0.87 AUC).
Our approach could potentially be used to solve other complex anomaly
detection problems.

Keywords: Deep Reinforcement Learning · Anomaly Detection · Inner
Ear · Congenital Malformation

1 Introduction

Sensorineural hearing loss (SNHL) in children is a major cause of disability.
Generally SNHL is detected early in many parts of the world, which allows the
prescription of interventions that mitigate the risk of abnormal social, emotional
and communicative development. Such interventions include Cochlear Implant
(CI) therapy which is prescribed each year to about 80,000 infants and tod-
dlers. Congenital SNHL is sometimes the consequence of an abnormal embry-
onic development. Resulting malformations are generally classified according to
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two categories: membranous malformations, which are not observable in conven-
tional medical scans, and congenital malformations, which can be detected by
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) [4]. These
cases raise surgical challenges during surgical planning of the CI therapy and
during the surgery itself, often requiring the surgeon to discover and adapt to
the anatomy of the malformation during the operation. Anticipating the presence
of such malformations from standard imaging modalities is a complex task even
for expert clinicians. Categories for these malformations have been described by
Sennaroğ L. et al. [16], and heuristics have been proposed to help identify them,
such as the ones proposed by Dhanasingh A. et al. [7]. These heuristics are how-
ever of limited use to inexperienced otologists and ear, nose, and throat (ENT)
surgeons, who, given the rarity of some of these conditions, cannot easily learn
to detect the associated image patterns reliably. We take a first step towards
assisting otologists and ENT surgeons in screening or detecting inner ear mal-
formation by proposing the first automated method to detect these anomalies
from clinical CT scans.

Different state-of-the-art deep learning methods have shown high perfor-
mance for automatic detection of anomalies as presented in [5]. Deep learning
approaches mostly based in convolutional neural networks used for classification
have been used in a clinical context for anatomical anomalies [8]. Training such
models requires large amounts of labeled medical data that faithfully represent
these anomalies, which is challenging and expensive to acquire, especially be-
cause datasets are usually imbalanced because pathological cases are generally
rare [17]. We propose a method that is trained uniquely on normative data for
landmark location, which makes the approach suitable for adaptation to other
anatomies. Knowledge of normal anatomical structural shapes and arrangements
acquired during landmark location training brings implicit information for de-
tecting anomalies within that region. Our method is based on multiple landmark
location in CT scans of the inner ear. Because we aim to detect abnormalities
indirectly by evaluating the output of the model, we define the landmark lo-
cation as an object search problem and choose to use a deep reinforcement
learning (DRL) architecture. We use both the communicative multiple agent
reinforcement learning (C-MARL[11]) model and the standard multiple agent
reinforcement learning (MARL[19]) model to locate a set of landmarks in the
inner ear. We extract two pieces of critical information from these models: First,
the variability of the predicted location of a certain landmark across different
runs/agents which we evaluate in a subspace defined by the normative data
landmarks after they are all aligned using Procrustes, and a principal compo-
nent analysis (PCA) of the shape variation is performed to define the subspace
as presented by López Diez et al. in [12]. Second, as a measurement of abnor-
mality, we use the distribution of the predicted Q-values for each agent over the
last ten states, including the final position where the landmark is placed. We
initially test our approach using a small set of landmarks in a tight crop of the
CT images centered on the cochlea versus synthetically generated images of a
specific type of inner ear malformation called cochlear aplasia. Furthermore, we
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tested the approach in real clinical data using a set of twelve landmarks in a
bigger crop of the inner ear.

Simpler methods such as PCA can be employed for anomaly detection in
physiological measurements [3, 10]. Several groups have used models trained on
healthy anatomies to derived the detection of anomalies. While conceptually
close to the approach we propose here, the methods have relied on spatial au-
toencoders or CycleGANs, as described by Baur C. et al. [2, 1], or segmentation
models such as the Bayesian UNet used by Seebock et al. [15]. These approaches
lack the spatial highlighting and interpretability that our landmark-based ap-
proach provides by using highly relevant points of interest defined according to
the anatomical malformations.

2 Data

We use two different datasets to test our approach. Our first dataset consists of
119 clinical CT scanners from diverse imaging equipment. These images consist of
a region of interest (ROI) with a size of (32.13mm3) with the cochlea in its center
and an average voxel resolution of 0.3 mm. To test our approach, we synthetically
generated abnormal inner ear CT scans from the original images by removing
the cochlea (simulating cochlear aplasia) from the images, thus generating cor-
responding pairs of normal and abnormal CT scans with the same surrounding
structures. The cochlea was segmented using ITK-SNAP software [20] and then
replaced by Gaussian noise with mean and standard deviation estimated from
the intensities of the tissue surrounding the segmentation [12]. An example of
the transformation process as well as the location of the anatomical landmarks
we use are shown in Figure 1. This dataset will be called the Synthetic Set
from now on.

Our second dataset consists of 300 normal anatomy CT scans from hetero-
geneous sources and 123 CT scans of inner ears that present diverse congenital
malformations. This unique dataset contains full-head CT images of CI patients
acquired through different CT scanners. This dataset will be referred as the
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Fig. 1: Left: Set of landmarks used in the Synthetic Set. 1, 2 - Opposite sides
of bony cochlear nerve canal in axial view. 3 - Facial Nerve (FN) exiting the
Internal Acoustic Canal. 4 - Closest point of FN and cochlea. 5 - Geniculate
ganglion of the FN. Edited from [18]. Right: Example image of CT scan from
test set, before and after the synthetic image generation by inpainting.
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Fig. 2: Set of landmarks annotated in normal anatomy CT images in the Real
Abnormality Set. 1 - Sigmoid Sinus (SS) (closest point to EAC). 2 - External
Acoustic Canal (EAC) (closest point to SS). 3 - Jugular Bulb (closest point to
Round Window (RW)). 4 - Carotid Artery(CA) (closest point to Basal turn of
the cochlea). 5 - Basal Turn (closest point to JB). 6,7 - Anterior and posterior
edges of RW. 8,9 - Anterior and posterior crus of staples. 10 - Short Process of
Incus. 11 - Pyramidal Process 12- Cochleariform Process. Edited from [18].

Real Abnormality Set further on. Out of the 300 normal ears, 175 were man-
ually annotated by an expert with 12 landmarks that define key points of this
anatomy. To optimally characterize certain points of interest, these landmarks
were designed in close collaboration with our clinical partner, an ENT surgeon
specialized in CI therapy in abnormal anatomies. These landmarks are presented
in Figure 2. Simultaneously, the same ROI of 803mm3 was extracted from the
full-head CTs by using the location of the mandible joint and the beginning of
the internal acoustic canal for both normal and abnormal anatomies. All images
were re-sampled to a 0.5 mm isotropic resolution.

3 Methods

DRL for landmark location. Deep-Q-Networks [14] are used to find the opti-
mal strategy for agents to reach their goal. These agents navigate through the 3D
image (environment) and observe their state, which is defined as a patch of the
image centered on the agent location. This patch becomes smaller as the agent
gets closer to the landmark (multi-scale). Based on the observed state, the agent
performs one action from the action set (move up, down, left, right, forward, and
backward) and receives a reward, which is a function of the Euclidean distance
between the current position of the agent and the previous position relative to
the target point (positive when agent is getting closer and negative otherwise).
The expected reward of taking a certain action given a state is known as the
Q-value. In deep reinforcement learning, the Q-value of a certain state associated
with each of the possible actions is estimated by the use of a Deep-Q-Network.
The architecture of the Deep-Q-Network used for landmark location resembles a
typical image classification architecture, but with a set of fully connected layers
for each agent. The architecture of the model is shown in Figure 3. The common
convolutional neural network weights among all agents provide implicit commu-
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Fig. 3: Diagram of the DRL model used. The explicit communication connections
are used in the C-MARL model, but not in the MARL model.

nication between the agents, meaning they share the same layers responsible for
extracting the relevant features for their current state. Meanwhile, the shared
average weight of the different fully connected layers allows for implicit com-
munication between agents, sharing information of the layers that are used to
map the extracted features from the current state to the predicted Q-value of
each agent. This setup has been proven especially effective when the different
landmarks present a consistent spatial correlation as it is the case with inner ear
anatomy[13]. We trained a C-MARL in the normal anatomies of the Synthetic
Set and the Real Abnormality Set. Finally we also trained the MARL model on
the normal samples of the Real Abnormality Set as we expect that the explicit
communication between agents might influence the variability of the model out-
put when facing an abnormal anatomy. The training configuration employed is
the same as presented in [13].

PCA shape distance method. The defined landmarks are placed in a
spatial configuration which reveals consistency between patients with normal
anatomy. We expect that for abnormal cases the landmarks predicted by the
model will deviate significantly from this configuration and from one another.
In order to test if a case is within the normal configuration, a point distribution
model (PDM) is constructed following the approach presented in [6]. We will
refer to a full set of landmarks in an image as shape where we know there is
a point correspondence across all shapes in the training data. The alignment
between all the annotated landmarks in normal anatomy is derived using Pro-
crustes analysis [9]. Using this transform, we obtain a PDM that describes the
shape variation only and that is invariant to size variation. Once the training
shapes are all aligned, a mean shape is computed x, followed by a PCA of
the shape variation [6]. The outcome of the PCA analysis is a set of principal
components concatenated into a matrix Φ, which describes the modes of shape
variation. A new shape xnew can be then defined as: xnew = x+Φb. The vector b
denotes weights controlling the modes of shape variation and Φ contains the first
t principal components. We chose to use a t value such that 90% of the shape
variability is contained in the Φ matrix. We found t = 11 for the 36-dimension
space defined by the twelve 3d-landmarks from Figure 2 over the 175 annotated
normal anatomy images of the Real Abnormality Set and t = 6 for the 92 normal
anatomy images annotated with five landmarks described in Figure 1 from the
Synthetic Set. A given x′ shape can be aligned to the Procrustes mean and be
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approximated by the PDM model by projecting the residuals from the average
shape into principal component space: b = ΦT (x′ − x). The vector b describes
the shape in terms of coordinates in the PCA space. In this space we evaluate the
distance between the different shapes predicted by the model. We then define the
distance dji = ||bi− bj ||2 which measures the variation of all the different shapes
predicted for a certain image. Finally we compute the standard deviation of this
distribution of distance values for a certain image, Dimage, which measures the
level of agreement among the multiple predictions computed in the PCA space
defined by normative shapes. A sketch of this approach is shown in Figure 4a.

Q-value history distribution method. Using deep Q-learning means that
the network is trained to estimate the Q-value, or estimated reward, of taking
a certain action given a certain state. Our hypothesis is that if the current
state of the agent that is looking for a certain landmark resembles the normal
anatomical configuration of such a region, the Q-values will present a uniform
distribution, as the agent should not expect a high reward for moving in a certain
direction. On the other hand, when the anatomy of the state does not look like
what the agent would expect, the Q-values should be less uniformly distributed,
pushing the agent to move in a certain direction. To test this hypothesis, we
have computed a measurement of the variability within the distribution of the
predicted Q-values of the action set. To compute this abnormality measurement
we collect the buffer with the predicted Q-values of the last 10 states of the
agent, which have empirically be found sufficient to define the later states of
the landmark search procedure. These Q-value vectors are then normalized for
each agent and merged together with the Q-values of the different runs for each
specific landmark. Then, the standard deviation of the Q-values distribution
is computed for each landmark un. These uncertainty measurements are then
joined together into a single value per image Uimage =

√∑
n u

2
n. An overview of

the process is outlined in Figure 4b.
The combination of both methods has been computed to evaluate its joint

performance. Due to the different magnitude of the measurements of each method,
a weighting factor has been included in the combination so both methods have a
more balanced contribution. The weighting factor w is defined as w =

median(Dtraining)
median(Utraining)

.

Then the combination of both methods is defined as Cimage =
√
D2

image + (wUimage)2

to analyze the joint performance.

4 Results

Each of our tests has been evaluated over five runs for a more rigorous anal-
ysis. Both methods described in the previous section where initially tested in
the Synthetic Set. The C-MARL model was trained on 92 images with three
agents per landmark for the five landmarks shown in Figure 1. The average er-
ror of landmark location is 0.814mm in the test set. Our method is tested on 27
normal anatomy CT crops and their corresponding artificially created abnormal
anatomy scans. The results are shown in Figure 5 a) and d).
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a)

b)

Fig. 4: Diagram of the computation process a) Dimage b) Uimage computation
process.

To test the performance in the Real Abnormality Set, we trained a C-MARL
model with one agent per landmark for the twelve landmarks described in Figure
2. The model was trained on 150 CT scans of patients with normal inner ear
anatomy with an average test error of 1.74 mm for landmark location over the
25 images of the test set. To test our method we used 123 other different CT
scans of normal anatomy and 123 of congenital malformations from the Real
Abnormality Set, over five runs. The results of our method are shown in Fig-
ure 5 b) and e). As was expected, there is a significant drop in performance
when comparing the results in the smaller ROI of the Synthetic Set shown in
Figure 5 d) and the results with the same architecture (with a different set of
landmarks) shown in Figure 5 e). However, we expected our method would ben-
efit from using the MARL model, which does not include the connections that
are responsible for the explicit communication between agents. This means that
the agents would not share explicit information about their location and search
procedure while looking for the landmarks. This makes agents more indepen-
dent from each other and less tied to the spatial correlation among them. Our
hypothesis is that avoiding this communication will derive greater values for
the abnormality measurements when facing an anomaly. The MARL model was
trained in the exact same configuration as the C-MARL model and obtained an
average error of 1.99 mm on landmark location accuracy. The results of apply-
ing our method in this configuration can be observed in Figure 5 c) and f). It
can be observed that the method does indeed perform better without explicit
communication connections in the model.
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The combination of both methods Cimage shows an improved performance
for the Synthetic Set as shown in Figure 5 d), and a very close performance to
the best-performing method for the Real Abnormality Set see Figure 5 e) and f).
We consider that the combination should be used as a more stable measurement
which shows an area under the curve (AUC) of 0.96 for the artificial dataset and
0.86 for the large clinical dataset.
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Fig. 5: Evaluation of the different methods over five runs for normal and abnor-
mal anatomies. Right: Abnormality measurements distribution. Left: Derived
ROC curves. a and b: 5 landmarks with C-MARL model in artificial data. c
and d: 12 landmarks with C-MARL model in clinical data. e and f: 12 land-
marks with MARL model in clinical data.

5 Conclusion

We have demonstrated that we can detect abnormal inner ear anatomies by
solely training a DRL model on normative data and evaluating the output vari-
ability of certain implicit information. This information looks at the relative
position of the predicted landmarks over different runs/agents in a subspace de-
fined by the normative annotations as well as the distribution of the Q-values of
the last iterations of the agents as a measurement of the uncertainty of the final
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location. Our MARL model achieved the best performance with an AUC of 0.87
in clinical data which is a high score for such a complex classification problem.
We showed how uncertainty information can be derived from a trained model
to automatically detect abnormal anatomies, meaning no specific classification
model needs to be trained, and therefore annotated abnormal data are not re-
quired to build the framework. We proved that the stated methods provide a
measurement of the abnormality of the model’s output which is linked with the
presence of malformations. We examined the approach with good results, not
only on artificially generated data, but also in a large dataset of real clinical CT
scans of patients with diverse inner ear malformations.
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