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Abstract. Accurate polyp segmentation is of great importance for col-
orectal cancer diagnosis and treatment. However, due to the high cost of
producing accurate mask annotations, existing polyp segmentation meth-
ods suffer from severe data shortage and impaired model generalization.
Reversely, coarse polyp bounding box annotations are more accessible.
Thus, in this paper, we propose a boosted BoxPolyp model to make full
use of both accurate mask and extra coarse box annotations. In practice,
box annotations are applied to alleviate the over-fitting issue of previ-
ous polyp segmentation models, which generate fine-grained polyp area
through the iterative boosted segmentation model. To achieve this goal,
a fusion filter sampling (FFS) module is firstly proposed to generate
pixel-wise pseudo labels from box annotations with less noise, leading to
significant performance improvements. Besides, considering the appear-
ance consistency of the same polyp, an image consistency (IC) loss is
designed. Such IC loss explicitly narrows the distance between features
extracted by two different networks, which improves the robustness of
the model. Note that our BoxPolyp is a plug-and-play model, which
can be merged into any appealing backbone. Quantitative and qualita-
tive experimental results on five challenging benchmarks confirm that
our proposed model outperforms previous state-of-the-art methods by a
large margin.
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1 Introduction

Colorectal Cancer (CRC) is one of the leading causes of malignant tumors death
worldwide. As the precursor of CRC, colorectal polyps are the driver of CRC
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Fig. 1. (a) Our proposed polyp segmentation model using both accurate mask anno-
tations and coarse bounding box ones. (b) Common annotation issues of the polyp
detection dataset LDPolypVideo [14]. The second row shows the noisy annotations.

morbidity and mortality. Therefore, accurate polyp segmentation and diagnosis
are of great significance to the survival of patients. Thanks to the evolution of
computer technology, massive polyp segmentation models [1,4,6,7,8,17,20,23,24,26,29]
have been proposed and achieved remarkable performance.

However, these models are always plagued by data shortages and suffer from
severe over-fitting issue. Since the popularity of U-Net [17] and FCN [13], most
of polyp segmentation models [7,23] are based on convolutional neural networks
(CNNs), which outperform traditional handcrafted ones but are data hungry.
Unfortunately, accurate labeling of polyp masks is time-consuming and labori-
ous, requiring pixel-by-pixel operation. Therefore, existing polyp segmentation
datasets are relatively small. In particular, the widely adopted polyp training
set [7,23] contains only 1,451 images, far from enough to feed a large capacity
CNN model. Thus, models trained on this dataset exhibit the unstable perfor-
mance and are sensitive to noise, which hampers the practical clinical usage.

To provide effective clinical assistance, a generalized polyp segmentation
model is urgently needed. In this paper, we struggle to achieve this goal using ex-
tra coarse bounding box annotations to expand the small segmentation dataset.
Specifically, a large open-released polyp detection dataset LDPolypVideo [14] is
adopted, which consists of 160 polyp video clips with 40,266 frames. Though
all these images are labeled with only coarse bounding box annotations, they
provide sufficient polyp appearance information and are much cheaper. Fig. 1(a)
shows the core idea of our method. Tranined with a few images with mask anno-
tations and a lot of images with bounding box annotations, a more generalized
polyp segmentation model is achieved. However, directly applying the bounding
box annotations of LDPolypVideo is suboptimal. Because the bounding box area
contains many background pixels. Taking the bounding box area as polyp mask
will bring a lot of noise. Besides, as shown in Fig. 1(b), LDPolypVideo contains
many blurred images, images with no polyps, wrong labels and imprecise labels,
which also will mislead the model training.
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To make the most of the good parts of LDPolypVideo annotations and re-
duce the bad parts, we propose the novel BoxPolyp model which mainly consists
of two modules: fusion filter sampling and image consistency loss. In practice,
fusion filter sampling (FFS) aims to generate pseudo labels for high-confidence
regions of each image in LDPolypVideo. By combining the raw bounding box
annotations and the predicted masks (derived from the model trained on a small
polyp segmentation dataset), FFS efficiently produces pixel-wise pseudo masks
for deterministic regions. For uncertain regions, pseudo masks are inaccurate and
therefore discarded. However, these discarded regions also contain valuable in-
formation. To fully explore these regions, we propose the image consistency (IC)
loss instead of generating pseudo masks. IC loss applies two different networks
to extract features from the same image and explicitly reduces the distance be-
tween features of the uncertain regions. By forcing feature alignment, our model
could learn robust polyp feature representations, requiring no mask annotations.

In summary, our contributions are three-folds: (1) We are the first to boost a
generalized polyp segmentation model through extra bounding box annotations.
(2) We propose the fusion filter sampling to generate pseudo masks with less
noise and design the image consistency loss to enhance the feature robustness of
uncertain regions. (3) Our proposed BoxPolyp is a plug-and-play model, which
can largely enhance polyp segmentation performance using different backbones.

2 Related Work

Traditional polyp segmentation models [20,28] are mostly based on low-level
features (i.e., color, texture and boundary). But limited by the poor semantics,
these models fail when dealing with complex scenarios. Recently, fully convo-
lutional networks (FCN) [13] have been widely adopted for polyp segmenta-
tion and make great progress. For example, U-Net [17], U-Net++ [29] and Re-
sUNet++ [11] use the encoder-decoder architecture to handle the segmentation
tasks, which has become the standard paradigm for subsequent works. How-
ever, the polyp boundaries are not well handled by these methods. Afterwards,
PsiNet [15], LODNet [5], PraNet [7], MSNet [27] and SFANet [8] force the model
to learn the feature differences, which greatly enhances the model’s perception
for polyp boundaries and achieve the promising results.

Besides, ACSNet [24], HRENet [18] and CCBANet [16] pay more attention
to context information. By adaptively aggregating multi-scale contexts, the am-
biguity of local features will be reduced, thus leading to highly confident predic-
tions. Unlike the above methods, SANet [23] deals with the polyp segmentation
task in terms of data distribution. By eliminating the color bias of the image,
SANet achieves robust performance gains in different scenarios. Furthermore,
with the success of transformer in image processing, researchers start working
on the long-distance dependency. For instance, PNSNet [12] uses a self-attention
block to mine the temporal and spatial relations in polyp videos. Polyp-Pvt [6]
directly introduces a transformer encoder to replace the widely used CNN back-
bones. Differently, Transfuse [25] combines both CNN and transformer to extract



4 Jun Wei, Yiwen Hu, Guanbin Li, Shuguang Cui, S.Kevin Zhou Zhen Li

Fig. 2. The pipeline for our proposed BoxPolyp model. First, a SANet [23] trained
on the small polyp segmentation dataset is used to predict the pixel-wise mask for
each box-annotated image. Then, a FFS module combines the predicted mask and
the box annotation to get the deterministic regions as pseudo labels. For regions of
uncertainty, we propose the IC loss to reduce the distance between features extracted
from two different backbones(i.e., Res2Net [9] and PVT [22])

.

spatial correlation and global context. All these methods have achieved remark-
able performance. But limited by training set, these models suffer from the over-
fitting issue. Therefore, we propose to use the cheap bounding box annotations
to boost a generalized polyp segmentation model.

3 Method

Fig. 2 depicts the whole framework of the proposed BoxPolyp segmentation
model, consisting of two parts: fusion filter sampling and image consistency loss.
Without special instructions, we use SANet [23] as our baseline model.

3.1 Fusion Filter Sampling

We integrate polyp detection dataset (i.e., LDPolypVideo [14]) to enhance the
polyp segmentation model. But LDPolypVideo is flawed in two ways. First,
as shown in Fig. 1(b), there exists many wrongs and imprecise labels in LD-
PolypVideo, bringing noise for supervision. Second, bounding box annotations
only provide coarse polyp contours and some background pixels are also in-
cluded. Directly taking bounding box masks as pseudo labels will mislead the
model. To solve the above issues, we propose fusion filter sampling (FFS) to
generate pseudo masks with less noise interference.

Specifically, FFS filters out noise through object-level bounding box anno-
tations and pixel-level pseudo masks, where object-level annotations weed out
mislabeled or hard images and pixel-level masks filter out the background pixels
in bounding box regions. For the object-level operation, given an image I, we
first convert its bounding box annotations into a binary mask B, as shown in
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Fig. 3. (a) Refined pseudo mask generation using fusion filter sampling module, which
consists of foreground, background and uncertain regions. (b) Different supervision for
regions of certainty and regions of uncertainty.

Fig. 3(a). Meanwhile, a pre-trained SANet [23] model (trained on small polyp
segmentation dataset) is applied to get a coarse prediction P for I. Intuitively,
if there is a big difference between B and P , I may be a hard sample or a misla-
beled sample. In either case, I will be filtered out and not involved in the model
training. Thus, the issues shown in Fig. 1(b) will be alleviated. In practice, we
choose Dice d = 2BP

B+P to measure the difference between B and P . Only images
with d > 0.7 will be selected out to minimize the impact of object-level wrong
annotations. For the pixel-level operation, we combine the complementarity of
B and P to refine the pseudo masks. Specifically, we choose pixels where both
B and P are equal to 1 as the foreground F . Namely, F = B∩P . Similarly, only
pixels where both B and P are equal to 0 will be regarded as the background K.
Namely, K = (1−B)∩ (1−P ). Other pixels belong to the uncertain regions, as
shown in Fig. 3(a). During training, only F and K are involved in supervision,
while uncertain regions are dealt with IC loss (described in Sec. 3.2). Through
FFS, we maximize the utilization of bounding box annotations and minimize the
potential noise interference.

3.2 Image Consistency (IC) Loss

By combining bounding box annotations and predicted masks, FFS module ob-
tains deterministic foreground and background regions for supervision, as shown
in Fig. 3(a). However, the regions of uncertainty are not supervised during train-
ing. Because no matter the box mask or the predicted mask is used as the pseudo
label, it will bring a lot of noise which is harmful to the model generalization.
In view of this, we propose the image consistency loss which mines supervisory
information from the relationship between images, instead of pseudo labels.

Specifically, for each polyp image, we send it to two SANet models but with
different backbone networks (i.e,. Res2Net [9] and PVT [22]), as shown in Fig. 2.
Due to the different architectures (i.e,. CNN and Transformer), the features Fr

and Fp extracted by Res2Net and PVT present different characteristics. Mean-
while, Fr and Fp come from the same image. They should have similar appear-
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ance. To bring the supervision for regions of uncertainty, we propose the IC loss
to explicitly reduce the distance between Fr and Fp, as shown in Eq. 1.

LIC =

∑
i,j(F

i,j
r − F i,j

p )2 · U i,j∑
i,j U

i,j
(1)

where i and j are the pixel indexes of polyp regions, U represents the mask of
uncertain regions. Thus, IC loss focuses on regions without labels. Supervised by
the IC loss, our model outputs more consistent predictions and greatly reduces
the over-fitting risk.

3.3 Loss Function

Following previous methods [23,7], binary cross entropy LBCE and Dice loss
LDice are adopted. Besides, the proposed LIC is also involved in the total loss,
as shown in Eq. 2.

Ltotal = LBCE + LDice + LIC (2)

4 Experiments

4.1 Datasets and Training Settings

Five widely used polyp segmentation datasets are adopted to evaluate the model
performance, including Kvasir [10], CVC-ClinicDB [2], CVC-ColonDB [3], En-
doScene [21] and ETIS [19]. For the comparability, we follow the same dataset
partition as [7]. Besides, nine state-of-the-art methods are used for comparison,
namely U-Net [17], U-Net++ [29], ResUNet [26], ResUNet++ [11], SFA [8],
PraNet [7], SANet [23], MSNet [27] and Polyp-Pvt [6]. Pytorch is used to imple-
ment our BoxPolyp model. All input images are uniformly resized to 352×352.
For data augmentation, random flip, random rotation and multi-scale training
are adopted. The whole network is trained in an end-to-end way with a AdamW
optimizer. Initial learning rate and batch size are set to 1e-4 and 16, respectively.
We train the entire model for 80 epochs.

4.2 Quantitative Comparison

To prove the effectiveness of the proposed BoxPolyp, nine state-of-the-art mod-
els are used for comparison, as shown in Table 1. BoxPolyp surpasses previous
methods by a large margin on the weighted average (wAVG) performace of five
datasets, demonstrating the superior performance of the proposed methods. In
addition, Fig. 4 shows the Dice values of the above models under different thresh-
olds (used to binarize the mask). From these curves, we observe that BoxPolyp
consistently outperforms other models, which proves its good capability for polyp
segmentation.
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Table 1. Performance comparison with different polyp segmentation models. The
red column represents the weighted average (wAVG) performance of different testing
datasets. Below the dataset name is the image number of each dataset.

ColonDB Kvasir ClinicDB EndoScene ETIS wAVG
380 100 62 60 196 798Methods

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU
U-Net .512 .444 .818 .746 .823 .750 .710 .627 .398 .335 .561 .493
U-Net++ .483 .410 .821 .743 .794 .729 .707 .624 .401 .344 .546 .476
ResUNet - - .791 - .779 - - - - - - -
ResUNet++ - - .813 .793 .796 .796 - - - - - -
SFA .469 .347 .723 .611 .700 .607 .467 .329 .297 .217 .476 .367
PraNet .712 .640 .898 .840 .899 .849 .871 .797 .628 .567 .741 .675
MSNet .751 .671 .905 .849 .918 .869 .865 .799 .723 .652 .785 .714
SANet .753 .670 .904 .847 .916 .859 .888 .815 .750 .654 .794 .714
Ours-Res2Net .820 .741 .910 .857 .904 .849 .903 .835 .829 .742 .846 .771
Polyp-Pvt .808 .727 .917 .864 .937 .889 .900 .833 .787 .706 .833 .760
Ours-Pvt .819 .739 .918 .868 .918 .868 .906 .840 .842 .755 .851 .776

Fig. 4. Dice curves under different thresholds on three polyp datasets.

4.3 Visual Comparison

Fig. 5 visualizes some predictions of different models. Compared with other
counterparts, our method not only clearly highlights the polyp regions but also
suppresses the background noise. Even for challenging scenarios, our model still
handles well and generates accurate segmentation mask.

4.4 Ablation Study

To investigate the importance of each component in BoxPolyp, the weighted av-
erage (wAVG) performace is adopted. We evaluate the model on both Res2Net [9]
and PVT [22] for ablation studies. As shown in Table 2, all proposed modules
are beneficial for the final predictions. Combining all these modules, our model
achieves the new state-of-the-art performance.
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Fig. 5. Visual comparison between the proposed method and six state-of-the-art ones.

Table 2. Ablation studies for BoxPolyp with different backbone networks.

Settings
wAVG-Res2Net wAVG-PVT
mDice mIoU mDice mIoU

SANet 0.794 0.714 0.833 0.760
SANet+FFS 0.839 0.757 0.848 0.772
SANet+FFS+IC 0.846 0.771 0.851 0.776

5 Conclusion

Limited by the size of the dataset, existing polyp segmentation models are vul-
nerable to noise and suffer from over-fitting. For the first time, we leverage the
cheap bounding box annotations to alleviate data shortage for a polyp segmen-
tation task. Although coarse, these annotations can greatly improve the model
generalization. It is achieved by the proposed FFS module and IC loss. In the
future, we will explore the design of a weakly-supervised polyp segmentation
model based on only bounding box annotations without masks.
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