Skip to main content

PET Denoising and Uncertainty Estimation Based on NVAE Model Using Quantile Regression Loss

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Deep learning-based methods have shown their superior performance for medical imaging, but their clinical application is still rare. One reason may come from their uncertainty. As data-driven models, deep learning-based methods are sensitive to imperfect data. Thus, it is important to quantify the uncertainty, especially for positron emission tomography (PET) denoising tasks where the noise is very similar to small tumors. In this paper, we proposed a Nouveau variational autoencoder (NVAE) based model using quantile regression loss for simultaneous PET image denoising and uncertainty estimation. Quantile regression loss was performed as the reconstruction loss to avoid the variance shrinkage problem caused by the traditional reconstruction probability loss. The variance and mean can be directly calculated from the estimated quantiles under the Logistic assumption, which is more efficient than Monte Carlo sampling. Experiment based on real \(^{11}\)C-DASB datasets verified that the denoised PET images of the proposed method have a higher mean(±SD) peak signal-to-noise ratio (PSNR) (40.64 ± 5.71) and structural similarity index measure (SSIM) (0.9807 ± 0.0063) than Unet-based denoising (PSNR, 36.18 ± 5.55; SSIM, 0.9614 ± 0.0121) and NVAE model using Monte Carlo sampling (PSNR, 37.00 ± 5.35; SSIM, 0.9671 ± 0.0095) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akrami, H., Joshi, A.A., Aydore, S., Leahy, R.M.: Addressing variance shrinkage in variational autoencoders using quantile regression. arXiv preprint arXiv:2010.09042 (2020)

  2. Ballestar, L.M., Vilaplana, V.: MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 376–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_34

    Chapter  Google Scholar 

  3. Bishop, C.M.: Mixture density networks (1994)

    Google Scholar 

  4. Cui, J., Gong, K., Guo, N., Kim, K., Liu, H., Li, Q.: Unsupervised pet logan parametric image estimation using conditional deep image prior. Med. Image Anal. 80, 102519 (2022)

    Article  Google Scholar 

  5. Cui, J., et al.: Populational and individual information based pet image denoising using conditional unsupervised learning. Phys. Med. Biol. 66(15), 155001 (2021)

    Article  Google Scholar 

  6. Cui, J., et al.: Pet image denoising using unsupervised deep learning. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2780–2789 (2019)

    Article  Google Scholar 

  7. Cui, J., Gong, K., Han, P., Liu, H., Li, Q.: Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Med. Phys. 49(4), 2373–2385 (2022)

    Article  Google Scholar 

  8. Cui, J., et al.: Pet denoising and uncertainty estimation based on NVAE model. In: 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). IEEE (2021)

    Google Scholar 

  9. Fessler, J.A.: Approximate variance images for penalized-likelihood image reconstruction. In: 1997 IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 949–952. IEEE (1997)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  11. Hao, J., et al.: Uncertainty-guided graph attention network for parapneumonic effusion diagnosis. Med. Image Anal. 75, 102217 (2022)

    Article  Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Huang, X., Shi, L., Suykens, J.A.: Support vector machine classifier with pinball loss. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 984–997 (2013)

    Article  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica: J. Econometr. Soc. 33–50 (1978)

    Google Scholar 

  17. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, 30 (2017)

    Google Scholar 

  18. Laves, M.H., Ihler, S., Fast, J.F., Kahrs, L.A., Ortmaier, T.: Well-calibrated regression uncertainty in medical imaging with deep learning. In: Medical Imaging with Deep Learning, pp. 393–412. PMLR (2020)

    Google Scholar 

  19. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  20. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp. 55–60. IEEE (1994)

    Google Scholar 

  21. Qi, J., Leahy, R.M.: A theoretical study of the contrast recovery and variance of map reconstructions from pet data. IEEE Trans. Med. Imaging 18(4), 293–305 (1999)

    Article  Google Scholar 

  22. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)

  23. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: Pixelcnn++: improving the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517 (2017)

  24. Sambyal, A.S., Krishnan, N.C., Bathula, D.R.: Towards reducing aleatoric uncertainty for medical imaging tasks. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2022)

    Google Scholar 

  25. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  26. Sudarshan, V.P., Upadhyay, U., Egan, G.F., Chen, Z., Awate, S.P.: Towards lower-dose pet using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data. Med. Image Anal. 73, 102187 (2021)

    Article  Google Scholar 

  27. Thiagarajan, P., Khairnar, P., Ghosh, S.: Explanation and use of uncertainty obtained by Bayesian neural network classifiers for breast histopathology images. IEEE Trans. Med. Imaging 41, 815–825 (2021)

    Article  Google Scholar 

  28. Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder. arXiv preprint arXiv:2007.03898 (2020)

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Yoshida, Y., Miyato, T.: Spectral norm regularization for improving the generalizability of deep learning. arXiv preprint arXiv:1705.10941 (2017)

Download references

Acknowledgements

This work was supported in part by the National Key Technology Research and Development Program of China (2020AAA0109502), the National Natural Science Foundation of China (U1809204, 62101488), the Key Research and Development Program of Zhejiang Province (2021C03029), the Talent Program of Zhejiang Province (2021R51004) and by China Postdoctoral Science Foundation (2021M692830)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafeng Liu or Quanzheng Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 160 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, J. et al. (2022). PET Denoising and Uncertainty Estimation Based on NVAE Model Using Quantile Regression Loss. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics