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Abstract. Positron emission tomography (PET) image reconstruction
is an ill-posed inverse problem and suffers from high level of noise due to
limited counts received. Recently deep neural networks especially convo-
lutional neural networks (CNN) have been successfully applied to PET
image reconstruction. However, the local characteristics of the convo-
lution operator potentially limit the image quality obtained by current
CNN-based PET image reconstruction methods. In this paper, we pro-
pose a residual swin-transformer based regularizer (RSTR) to incorpo-
rate regularization into the iterative reconstruction framework. Specifi-
cally, a convolution layer is firstly adopted to extract shallow features,
then the deep feature extraction is accomplished by the swin-transformer
layer. At last, both deep and shallow features are fused with a residual
operation and another convolution layer. Validations on the realistic 3D
brain simulated low-count data show that our proposed method outper-
forms the state-of-the-art methods in both qualitative and quantitative
measures.

Keywords: Positron Emission Tomography (PET) · image reconstruc-
tion · model-based deep learning · Transformer.

1 INTRODUCTION

Positron Emission Tomography (PET) is one of the irreplaceable tools of func-
tional imaging, which is wildly used in oncology, cardiology, neurology and med-
ical research [1]. However, PET images usually suffer from high level of noise
due to many physical degradation factors and the ill-conditioning of PET recon-
struction problem.

To reconstruct high-quality PET images, lots of works have been proposed
over the last few decades, which can be roughly divided into five categories: 1)tra-
ditional analytic methods such as filtered back-projection (FBP [2]) and itera-
tive methods like maximum-likelihood expectation maximization (ML-EM [3]);
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Fig. 1. The overall flow-chart of proposed method. Specifically, TransEM is composed
of n blocks. Each block contains EM for image updating, RSTR for regularization and
a pixel to pixel fusion operation.

2)prior-incorporative methods; 3)image post-processing (denoising) methods; 4)
Penalized Log-Likelihood (PLL) methods and 5)deep learning based methods.

The FBP algorithm is based on the central slice theorem, which can rapidly
finish the reconstruction but suffers from heavy noise due to the lack of mod-
eling of physical properties. Iterative algorithms, such as ML-EM modeled the
physical properties and improved image quality. However, the excessive noise
propagation from the measurements is the biggest disadvantage of ML solution.
To further improve the image quality, prior-incorporative reconstruction meth-
ods, image post-processing methods and PLL methods have been introduced.
The performance of PLL methods [4,5,6] and prior-incorporative methods like
kernel methods [7] are closely related to the hyper-parameters that are often
hand-crafted before reconstruction. Post-processing is an effective way to reduce
noise such as BM3D [8], non-local mean (NLM) [9] and gaussian filter. However,
these methods usually tend to be over-smoothing and time-consuming.

Deep learning (DL) techniques especially supervised learning techniques have
recently drawn much attention and shown promising results in PET image recon-
struction [10]. Among them, direct learning, DL-based post-denoising and model-
based learning are three mainstream approaches. Direct learning [11] methods
usually learn the mapping from sinogram to the PET image through deep neu-
ral networks (DNN). Because there are no physical constraints, direct learning
methods are extremely data-hungry and sometimes unstable. DL-based post-
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denoising methods [12] are simple to implement, but the final results are very
sensitive to the pre-reconstruction algorithms.

By unrolling an iterative reconstruction algorithm, model-based learning
shows inspiring results and good interpretability, which has been a promising
direction. Gong et al. proposed an unrolled network based on 3D U-net and
alternating direction method of multipliers (ADMM) [13]. Mehranian et al. pro-
posed a forward backward splitting algorithm for Poisson likelihood and unrolled
the algorithm into a recurrent neural network with several blocks [14]. Lim et al.
unrolled the block coordinate descent (BCD) algorithm with U-net [15]. All these
methods adopt convolutional neural networks (CNN) to assist in reconstruction.
However, a convolution operator has a local receptive field [16], giving rise to
that CNNs cannot process long-range dependencies unless passing through a
large number of layers. while when layer number increases, the feature reso-
lution and fine details may be lost, which limits the quality of reconstructed
images. For this issue, the Transformer [17] is noticed for its strong ability in
modeling long-range dependencies of the data and tremendous success in the lan-
guage domain. Recently, it has also demonstrated promising results in computer
vision.

In this paper, we propose a residual swin-transformer [18] based regular-
izer (RSTR) along with the ML-EM iterative framework, called TransEM, to
reconstruct the standard-dose image from low count sinogram. As one of the
model-based learning methods (MoDL), TransEM does not need a large train-
ing dataset and achieves state-of-the-art results in realistic 3D brain simulation
data.

2 METHODS AND MATERIALS

2.1 Problem formulation

In PET image reconstruction from sinogram data, The measured data y can be
well modeled by a Poisson noise model given by:

y ∼ Poisson{y} s.t. y = Ax+ b (1)

where y ∈ RI is the mean of the measured data y ∈ RI with yi representing the
i-th detector bin, x ∈ RJ is the unknown activity distribution image with xj
representing j-th voxel. b ∈ RI denotes the expectation of scatters and randoms.
I is the number of detector pairs and J is the number of pixels. A ∈ RI×J is
system response matrix with Aij representing the probabilities of detecting an
emission from voxel j at detector i.

Like many other under-determined inverse problem, the unknown image x
can be estimated from a Bayesian perspective:

x̂ = argmax
x

L(y|x)− βR(x) (2)

L(y|x) =
∑
i

yi log yi − yi (3)
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where L(y|x) is the Poisson log-likelihood function of measured sinogram data,
R(x) is the regularization term, β is the parameter that controls the regulariza-
tion.

The forward-backward splitting(FBS) algorithm [19] and optimization trans-
fer method can be used to solve Eq. (2). FBS algorithm is used to split the
objection function into two terms:

rk = xk−1 − αβ∇R(xk−1) (4)

xk = argmax
x

L(x|y)− 1

2α
||x− rk||2 (5)

where Eq. (4) is a gradient descent update with step size of α and k denotes
k-th iteration. In original FBSEM [14], the Eq. (4) was replaced by a Residual
CNN [20] unit, while the performance of CNN-based regularizer in long-range
dependencies is limited due to their localized receptive fields, which limits the
quality of the images obtained. To address this issue, we proposed a residual swin-
transformer based regularizer (RSTR) to replace the gradient descent update in
Eq. (4):

rk = RSTR(xk−1) (6)

Eq. (5) can be reformulated with optimize transfer [21] method and EM surro-
gate [22]:

xk = argmax
x

∑
j

x̂kj,EM ln(xj)− xj −
1

2α
∑
iAij

(xkj − rkj )
2

(7)

and x̂kj,EM is given by ML-EM [3] algorithm:

x̂kj,EM = xk−1
j

1∑
iAij

∑
i
Aij

yi
yi

(8)

setting the derivative of Eq. (7) to zero, the following closed-form solution can
be obtained:

xkj =
2xkj,EM

1− rkj
α
∑

i Aij
+

√
(1− rkj

α
∑

i Aij
)
2

+ 4
xk
j,EM

α
∑

i Aij

(9)

it can be viewed as a pixel to pixel fusion between regularized reference image
rkj and ML-EM result xkj,EM . The parameter α was learned from training data.

The whole reconstruction workflow called TransEM is shown in Fig. 1. The
TransEM was unrolled to n blocks, where each block consists of two separate
steps and a pixel to pixel fusion operation. The two separate steps are a EM
step for image update from measured sinogram data and a deep learning step
for prior learning using proposed residual swin transformer based regularizer
(RSTR) in image domain.
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2.2 Residual swin-transformer regularizer

As shown in Fig. 1, the RSTR is a residual block with a Swin Transformer
Layer (STL) [18] and two convolutional layers. At first, a 3 × 3 convolutional
layer is used to extract the shallow feature, then a STL is used to extract deep
features. At last, another 3 × 3 convolutional layer is used to aggregate the
shallow and deep features with a residual learning operation. STL is based on
original Transformer layer and multi-head self-attention (MSA), the input of
size H ×W ×C is firstly reshaped to a feature map with size of HWM2 ×M2 ×C
according to the shifted window mechanism. Then the standard self-attention
separately for each window is calculated. After that, a multi-layer perceptron
(MLP) with GELU [23]activation are used. Besides, the residual connection is
applied for both modules and the LayerNorm (LN) is added before MLP and
MSA.

The whole process of RSTR is formulated as:

X1 = Conv3×3(Input)

X2 =MSA(LN(X1)) +X1

X3 =MLP (LN(X2)) +X2

Output = Conv3×3(X3) +X0

(10)

2.3 Implementation details and Reference Methods

The TransEM was unrolled with ordered subsets (OS) acceleration and imple-
mented using Pytorch 1.7 on a NVIDIA RTX 3090. The number of unrolled
Blocks is 60 (10 iterations and 6 subsets). The windowsize of STL (M) is 4.
Adam [24] optimizer and Mean square error (MSE) loss between the network
outputs and the label images were used during training. The image x0 was
initialized with values of one. The proposed TransEM was compared with con-
ventional ordered subsets expectation maximization (OSEM [25]), maximum a
posterior probability expectation maximization algorithm (MAPEM [26]), Deep-
PET [27] and FBSEM [14]. For both OSEM and MAPEM, 10 iterations and 6
subsets were adopted. The quadratic penalty was used for MAPEM and the β
was set to 0.005. Both DeepPET and FBSEM were trained with MSE loss and
Adam optimizer. The learning rate was 5e-5, batch size was 4.

3 EXPERIMENT AND RESULTS

3.1 Experimental evaluation

Twenty 3D brain phantoms from BrainWeb [28] were used to simulate 2D 18F
FDG PET images with the resolution and matrix size of 2.086×2.086×2.031
mm3 and 344×344×127 acquired from a Siemens Biograph mMR. For each
phantom, 10 noncontinuous slices were selected from each of the three orthogo-
nal views to generate high count sinograms which were used to reconstruct the
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OSEM DeepPET FBSEM ProposedMAPEMLabel

Slice 4

Slice 15

Slice 27

Fig. 2. Reconstruction results of OSEM, MAPEM, DeepPET, FBSEM and proposed
TransEM on three orthogonal views of one test brain sample.

label images and low count sinograms with size of 172×252. The system ma-
trix was simulated with Siddon projection [29]. For high count, 5 ∗ 106 counts
and point spread function (PSF) modeling with 2.5mm full width at half maxi-
mum (FWHM) Gaussian kernels were used, while 5 ∗ 105 counts on average and
PSF of 4mm were used for low count. The high dose label images were recon-
structed from high count sinogram using OSEM algorithm with 10 iterations
and 6 subsets. Besides, fifteen hot spheres of radius ranging from 2mm to 8mm
were inserted into all phantoms. TransEM has trained with 17 brain samples
(510 slices) to map low count sinogram to high dose label PET images, and 2
brain samples (60 slices) for testing and 1 brain sample (30 slices) for valida-
tion. To assess reconstruction quality, quantitative comparisons were performed
against high dose label images. Both references and reconstructed images were
normalized to a maximum of 1. Peak signal to noise ratio (PSNR), structural
similarity index (SSIM [30]) and mean contrast recovery coefficients (MCRC)
were calculated.

MCRC =
1

N

N∑
n=1

Ia
Itrue

(11)

where N is the number of pictures which contains the simulated tumors, Iais
the average uptake of all the tumor areas in the test phantom.

3.2 Results

Fig. 2 shows three orthogonal views of the reconstructed brain PET images
using different methods. It can be observed that the conventional OSEM algo-
rithm suffers from high level noise. MAPEM reduces noise but always shows
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Fig. 3. Quantitative image quality(PSNR, SSIM) comparison among different methods
.

FBSEM ProposedHigh counts DeepPET

Slices’ direction of 

training data
Slices’ direction of 

test data

Fig. 4. Robustness analysis on the difference slices’ direction between the training set
and test set. In this experiment, the training slices are selected from the transverse
plane, while the test slices are from the sagittal plane.

over-smooth, resulting in losses of detailed information. As one of the direct
learning methods, DeepPET performed not so good. One possible reason is that
DeepPET is extremely data-hungry, so poor performance on a small dataset is
expected. The FBSEM has a better noise reduction compared to the traditional
method OSEM, MAPEM and direct learning method DeepPET, but also has
some noises showing up in different regions and some structural information is
not well recovered. As seen, the proposed TransEM revealed more cortex struc-
tures and preserved edges well compared to other methods. The quantitative
results on the test set are demonstrated in Fig. 3 where our proposed method
achieves the highest scores among all the methods.

3.3 Robustness analysis

Besides, to analyze the robustness of the proposed TransEM on different low
count levels, we have trained DeepPET, FBSEM, and TransEM on 1/4, 1/100
downsampled data. The training label is reconstructed by OSEM with high
count(5e6) data. Each experiment involves retraining and testing. As shown in
Table 1, including 1/10 downsampled data results mentioned above, TransEM
beats all comparison methods at different counts except DeepPET in 1/100
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Table 1. The PSNR SSIM and MCRC of the test set with different counts level.

Method Counts=1.25e6 (1/4) Counts=5e5 (1/10) Counts=5e4 (1/100)

PSNR SSIM MCRC PSNR SSIM MCRC PSNR SSIM MCRC

MLEM 19.97±2.69 0.86±0.02 0.6852 19.24±2.34 0.84±0.03 0.5109 15.03±1.93 0.77±0.03 0.1662
MAPEM 22.35±2.26 0.88±0.02 0.8187 22.30±2.25 0.86±0.02 0.7983 17.04±2.23 0.79±0.03 0.3838
DeepPET 20.74±2.05 0.82±0.04 0.7005 21.77±2.13 0.84±0.04 0.6813 20.69±2.8320.69±2.8320.69±2.83 0.82±0.05 0.66900.66900.6690
FBSEM 22.52±2.00 0.88±0.01 0.8448 22.94±1.84 0.88±0.02 0.8518 19.16±2.35 0.82±0.03 0.5681
Proposed 22.61±2.0022.61±2.0022.61±2.00 0.90±0.010.90±0.010.90±0.01 0.85780.85780.8578 23.10±1.8623.10±1.8623.10±1.86 0.89±0.020.89±0.020.89±0.02 0.87180.87180.8718 20.10±2.47 0.84±0.030.84±0.030.84±0.03 0.5765

Without RC

With RC

Slice 5 Slice 24 Slice 43

(a) Ablation study on RC
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Fig. 5. Ablation study on different settings of TransEM.

downsampled situation, while we would like to emphasize that it looks like Deep-
PET got pretty good PSNR and MCRC, in ultra-low count situation, due to the
lack of physical constraints, the over-fitting of DeepPET is severe and the results
are not very reliable which is proved true when we trained the three learning
methods with transverse slices and tested with sagittal slices. We selected train-
ing slices from the transverse plane and test slices from the sagittal plane to test
the generalization ability of three learning-based methods as shown in Fig. 4. It
can be observed that the generalization ability of DeepPET is poor.

3.4 Ablation study and discussion

Figure 5(a) shows two residual connection (RC) variants outside STL in RSTR.
Without residual connection, the training step is easily falling into sub-optimal
solution and is difficult to convergence. The significance of RC also lies in the
comparison of reconstruction results.In TransEM proposed in this paper, most of
the parameters are learned from training data, however, the number of unrolled
blocks is hand-crafted. In this section, the sensitivity of the number of unrolled
blocks is analyzed. Due to the limitation of hardware and image size, the number
of subsets that we chose is 6, so the number of unrolled blocks is multiples of six.
When the number is 60, the TransEM achieves the best performance as shown in
Fig 5(b), so the number of unrolled blocks is 60 in the experiment in this paper.
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4 CONCLUSIONS

In this work, we proposed a model-based deep learning method by unrolling the
EM algorithm with residual swin-transformer regularizer for low-dose PET image
reconstruction. Simulated human brain data were used in the evaluation. Both
quantitative and qualitative results show that the proposed TransEM performs
better than the FBSEM, DeepPET as well as traditional OSEM and MAPEM
regarding PSNR, SSIM and MCRC. Because lack of clinical PET data currently,
future work will focus on more clinical evaluations.
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