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Abstract. MOTIVATION: Detection of prostate cancer during tran-
srectal ultrasound-guided biopsy is challenging. The highly heteroge-
neous appearance of cancer, presence of ultrasound artefacts, and noise
all contribute to these difficulties. Recent advancements in high-frequency
ultrasound imaging - micro-ultrasound - have drastically increased the
capability of tissue imaging at high resolution. Our aim is to investi-
gate the development of a robust deep learning model specifically for
micro-ultrasound-guided prostate cancer biopsy. For the model to be
clinically adopted, a key challenge is to design a solution that can con-
fidently identify the cancer, while learning from coarse histopathology
measurements of biopsy samples that introduce weak labels. METH-
ODS: We use a dataset of micro-ultrasound images acquired from 194
patients, who underwent prostate biopsy. We train a deep model using a
co-teaching paradigm to handle noise in labels, together with an eviden-
tial deep learning method for uncertainty estimation. We evaluate the
performance of our model using the clinically relevant metric of accuracy
vs. confidence. RESULTS: Our model achieves a well-calibrated estima-
tion of predictive uncertainty with area under the curve of 88%. The use
of co-teaching and evidential deep learning in combination yields signif-
icantly better uncertainty estimation than either alone. We also provide
a detailed comparison against state-of-the-art in uncertainty estimation.

Keywords: prostate cancer · micro-ultrasound · uncertainty · weak la-
bels

1 Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide [18].
The standard of care for diagnosing PCa is histopathological analysis of tissue
samples obtained via systematic prostate biopsy under trans-rectal ultrasound
(TRUS) guidance. TRUS is used for anatomical navigation rather than cancer
targeting. The appearance of cancer on ultrasound is highly heterogeneous and
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is further affected by imaging artifacts and noise, resulting in low sensitivity and
specificity in PCa detection based on ultrasound alone.

Substantial previous literature and large multi-center trials report low sensi-
tivity of systematic TRUS biopsy. In [3], authors compare diagnostic accuracy
of TRUS biopsy and multi-parametric MRI (mp-MRI). They report sensitivity
of systematic TRUS biopsy as low as 42-55% compared to 88-96% for mp-MRI.
However, they report low specificity of 36-46% for mp-MRI compared to 94-98%
for TRUS.

Fusion of mp-MRI imaging with ultrasound can enable targeted biopsy by
identifying cancerous lesions in the prostate [13,17]. Fusion biopsy involves either
manual or semi-automated registration of lesions identified in mp-MRI with
real-time TRUS. This process can be time-consuming and inaccurate due to
registration errors and patient motion. It is therefore highly desirable to improve
the capability of biopsy targeting using ultrasound imaging alone at the point
of care.

The recent development of high frequency “micro-ultrasound” technology al-
lows for the visualization of tissue at higher resolution than conventional ultra-
sound. A qualitative scoring system based on visual analysis of micro-ultrasound
images called the PRI-MUS (prostate risk identification using micro-ultrasound)
protocol [6] has been proposed to estimate PCa likelihood. Several studies have
shown that micro-ultrasound can detect PCa with sensitivity comparable to that
of mp-MRI using this grading system [2,4]. A recent systematic review and meta
analysis analyzing 13 published studies with 1,125 total participents found that
micro-ultrasound guided prostate biopsy and mp-MRI imaging targeted prostate
biopsy resulted in comparable detection rates for PCa [19]. Research on this tech-
nology is in early stages and relatively few quantitative methods are reported.
Rohrbach et al. [14] use a combination of manual feature selection with machine
learning as the first quantitative approach to this problem. Shao et al. [16] use a
deep learning strategy with a three-player minimax game to tackle data source
heterogeneity. While these studies show significant potential of micro-ultrasound
as a diagnostic tool for PCa, methods to-date primarily focus on improving ac-
curacy for cancer prediction. We argue that in addition, confidence in detection
of cancer can play a significant role for adoption of this technology to ensure that
predictions can be clinically trusted. Towards this end, we propose to address
several key challenges.

Machine learning models built from ultrasound data rely on ground truth
labels from histopathology that are coarse and only approximately describe the
spatial distribution of cancer in a biopsy core [11,14,16]. The lack of finer labels
cause two challenges: first, labels assigned to patches of ultrasound images in
a biopsy core may not match the ground truth tissue, resulting in weak labels;
second, biopsies include other types of tissue such as fibromuscular cells, benign
prostatic hyperplasia and precancerous changes. Many of these tissues are unla-
beled in a histopathology report, which will result in out-of-distribution (OOD)
data. Therefore, effective learning models for micro-ultrasound data should be
robust to label noise and OOD samples.
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Several solutions have been presented to address the above issues, mainly by
quantifying the uncertainty of predictions [1,12,5]. Predictive uncertainty can be
used as a tool to discard unreliable and OOD samples. Evidential deep learning
(EDL) [15] and ensemble methods [12] are amongst such approaches. In partic-
ular, evidential learning is computationally light, run-time efficient and theoret-
ically grounded, hence it fits our clinical purpose here. Learning from noise in
labels (i.e. weak labels) has also been addressed before using methods that 1)
estimate noise; 2) modify the learning objective function, or 3) use alternative
optimization [8]. Among these, co-teaching [9] has been shown to be a success-
ful baseline that can be easily integrated with any uncertainty quantification
method.

In this paper, for the first time, we propose a learning model for PCa de-
tection using micro-ultrasound that can provide an estimate of its predictive
confidence and is robust to weak labels and OOD data. We address label noise
using co-teaching and utilize evidential learning to estimate uncertainty for OOD
rejection, resulting in confident detection of PCa. We assess our approach by ex-
amining the classification accuracy and uncertainty calibration (i.e. the tendency
of the model to have high levels of certainty on correct predictions). We com-
pare our methodology to a variety of uncertainty methods with and without
co-teaching and demonstrate significant improvements over baseline. We show
that applying an adjustable threshold to discard uncertain predictions yields
great improvements in accuracy. By allowing correct and confident predictions,
our approach could provide clinicians with a powerful tool for computer-assisted
cancer detection from ultrasound.

2 Materials and Methods

2.1 Data

Data is obtained from 2,335 biopsy cores of 198 patients who underwent tran-
srectal ultrasound-guided prostate biopsy through a clinical trial and after in-
stitutional ethics approval is provided. A 29 MHz micro-ultrasound system and
transducer (ExactVu, Markham) was used for data acquisition. A single sagittal
ultrasound image composed of 512 lateral radio frequency (RF) lines was ob-
tained prior to the firing of the biopsy gun for each core. Primary and secondary
Gleason grades, together with an estimate of the fraction of cancer relative to
the total core area (the so-called “involvement of cancer”) are also provided for
each patient. We under-sampled benign cores in order to obtain an equal pro-
portion of cancerous and benign cores during training and evaluation, resulting
in 300 benign and 300 cancerous cores, respectively. As in [14], we exclude cores
with involvement less than 40% to learn from data that better represents PCa.
We hold out the data from 27 patients as a test set, with the remaining 161 used
for training and cross-validation.

Pre-processing: For each RF ultrasound image, a rectangular region of interest
(ROI) corresponding to the approximate needle trace area is determined by using
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Fig. 1. Top left: Patches are extracted from the needle region. Top Right: During train-
ing, “clean” examples are selected by the peer model for training updates. Bottom: The
model predicts evidence scores which are used to calculate predictions and uncertainty.
Predictions with high uncertainty are rejected.

the angle and location of the probe-mounted needle relative to the imaging
plane (Fig. 1, yellow region). This ROI is intersected with a manually drawn
prostate segmentation mask to exclude non-prostatic tissue. Overlapping patches
are extracted corresponding to 5 mm × 5 mm tissue regions with an overlap of
90% covering the ROI. These patches are up-sampled in the lateral direction
and down-sampled in the axial direction by factors of 5 to obtain a uniform
physical spacing of pixels in both directions. This results in a patch of 256 by
256 pixels. Ultrasound data in each patch are normalized to a mean of 0 and
standard deviation of 1. Patches are assigned a binary label of 0 (benign) or
1 (cancerous) depending on the pathology of the core. The patches and their
associated labels are inputs to our learning algorithms.

2.2 Methodology

We propose a micro-ultrasound PCa detection learning model that is robust to
challenges associated with weak labels and OOD samples. In this section, we
first define the problem followed by descriptions of co-teaching as a strategy for
dealing with weak labels. Next, we incorporate evidential deep for quantifying
prediction uncertainty and excluding suspected OOD data. Finally, we present
evaluation metrics to assess our methods.

Weak Labels and OOD: Let Xi = {x1, x2, ..., xni
} refer to a biopsy core

where ni number of patches extracted from needle region (Figure 1). For each
biopsy core Xi, pathology reports a label Yi and the length of cancer Li in
core, which is a rough estimate between zero and the biopsy sample length.
Following previous work in PCa detection [14,11], we assign coarse pathology
labels Yi to all extracted patches {x1, x2, ..., xni

} due to the lack of finer patch-
level labels. Therefore, many assigned labels to patches may not necessarily
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match with the ground truth and they are inherently weak. Additionally, other
tissue than cancer, present in the core, does not have any gold standard labels.
Therefore, there is also OOD data.

Co-teaching: We propose to use a state-of-the-art method, co-teaching, to
address label noise for micro-ultrasound data [9]. For weak label methods, we
rely on the findings of [11] showing the success of co-teaching method, and [20],
which found that co-teaching significantly out-performed other methods such as
robust loss functions. This approach simultaneously trains two similar neural
networks with different weight initializations. According to the theory of co-
teaching, neural networks initially learn simpler and cleaner samples then overfit
to noisy input. Therefore, during each iteration, each network picks a subset of
samples with lower loss values as potentially clean data and trains the other
network with those samples. In a batch of data with size N , only R(e) ∗ N
number of samples are selected by each network as clean samples, where R(e) is
the ratio of selection starting from 1 and gradually decreasing to a fixed value
1 − γ. Formally we have R(e) = 1 − min( e

emax
, γ), where γ ∈ [0, 1] is a hyper-

parameter, and e and emax are the current and maximum number of epochs,
respectively. Using two networks prevents confirmation bias from arising.

Evidential Deep Learning: Evidential deep learning (EDL) [15] uses the
concepts of belief and evidence to formalize the notion of uncertainty in deep
learning. A neural network is used to learn the parameters of a prior distribution
for the class likelihoods instead of point estimates of these likelihoods. Given a
binary classification problem where P (y = 1|xi) = pi, instead of estimating pi,
the network estimates parameters e0, e1 such that pi ∼ Beta(e0+1, e1+1). These
parameters are then referred to as evidence scores for the classes, and used to
generate a belief mass and uncertainty assignment, via b0 = e0

S , b1 = e1
S , U = 2

S ,

where S =
∑1

i=0 ei + 1. Note that b0 + b1 + U = 1. U ranges between 0 and 1
and is inversely proportional to our overall level of belief or evidence for each
class. It is worth mentioning that term confidence is also used often instead of
uncertainty with confidence being 1− U .

The network is trained to minimize an objective function based on its Bayes
Risk as an estimator of the likelihoods pi. If the network produces evidences
e0, e1 for sample i, the loss and predicted uncertainty for this sample are

Li =

n∑
i=1

Epi∼Beta(e0+e1)

(
|pi − yi|2

)
, Ui =

2

e0 + e1 + 2
, (1)

where e0 and e1 are the network outputs. The loss also incorporates a KL di-
vergence term, which encourages higher uncertainty on predictions that do not
contribute to data fit. The method offers a combination of speed (requiring only
a single forward pass for inference) and well-calibrated uncertainty estimation
with a solid theoretical foundation.
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Table 1. Effect of co-teaching on accuracy and calibration error.

Method AUC Sensitivity Specificity Patch B-accuracy ECE

EDL
88.27 71.32 84.80 67.47 0.1989
± 2.66 ± 1.23 ± 7.01 ± 2.47 ± 0.0142

EDL + Co-teaching
(ours)

87.76 67.38 88.20 71.25 0.1379
± 1.82 ± 4.91 ± 6.85 ± 1.16 ± 0.0258

Clinical Evaluation Metrics: The goal of our model is to provide the operator
with clinically relevant information, such as real-time identification of potential
biopsy targets. It should also state the degree of confidence in its predictions such
that the operator can decide when to accept the model’s suggestions or defer
to their own experience. To measure these success criteria, we propose several
evaluation metrics.

Accuracy reported at the level of patches (the basic input to the model) can
be misleading due to weak labeling (some correct predictions are recorded as
incorrect because of incorrect labels). Therefore, we propose accuracy reported at
the level of biopsy cores as a more relevant alternative. We determine core-based
accuracy using core-wise predictions aggregated from patch-wise predictions for
the core. Specifically, the average of patch predicted labels is used as a probability
score that cancer exists in the core [20,21]. To model uncertainty at the core
level, patch-wise predictions that do not meet a specified confidence threshold
are ignored when calculating this score, and if more than 40% of the patch
predictions for a core fall below this threshold, the entire core prediction is
considered “uncertain”.

We also use “uncertainty calibration”, a metric that assesses how accurate
and representative the predicted uncertainty or confidence is (in terms of true
likelihood). To compute calibration, we compute Expected Calibration Error
(ECE) [7], which measures the correspondence between predictive confidence
and empirical accuracy. ECE is calculated by grouping the predictions so that
each prediction falls into one of the S equal bins produced between zero and one
based on its confidence score:

ECE =

S∑
s=1

ns
N
|acc(s)− conf(s)|, (2)

where S denotes the number of bins (10 used in this paper), ns the number of
predictions in bin s, N the total number of predictions, and acc(s) and conf(s)
the relative accuracy and average confidence of bin s, respectively.

3 Experiments and Results

From all data, 161 patients (392 cores, 12664 patches) are used for training and
a further 40 patients are used as a validation set for model selection and tuning.
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Fig. 2. Left: accuracy vs. confidence plot. As we increase the confidence threshold
τ and retain only confident predictions, the balanced accuracy increases accordingly.
Middle: The number of remaining cores following exclusion based on the confidence
threshold. Right: the Expected Calibration Error (ECE) error bar plot for all presented
uncertainty quantification methods (lower is better).

We hold out a set of randomly selected, mutually exclusive, patients as test set
(27 patients, 80 cores, 2808 patches). All experiments, except for the ensemble
method, are repeated nine times with three different validation sets, each with
three different initializations; the average of all runs is reported. For the ensemble
method, as suggested in [12], five different models with different initialization are
used for estimating true prediction probabilities, p(yi|xi). This process is done
with five different validation sets, resulting in a total of 25 runs. As a backbone
network, we modify ResNet18 [10] by using only half of the layers in each residual
block. We found this reduction in layers to improve model performance, likely by
reducing overfitting. Two copies of modified ResNet with different initializations
are used for the co-teaching framework. For our choice of γ, we emprically found
0.4 to be the best. We employ the NovoGrad optimizer with learning rate of
1e-4.

3.1 Effect of Co-teaching

To determine the effects of weak labels and the added value of co-teaching, we
design an experiment comparing EDL with co-teaching to EDL alone. Table 1
shows a promising improvement in both ECE score and patch-based balanced
accuracy (Patch B-accuracy) when the co-teaching is employed. We report sen-
sitivity, specificity and area under the curve (AUC) metrics for cores. Counter-
intuitively, we observe that gains in patch-wise accuracy with co-teaching are not
reflected in these metrics. We hypothesize that the averaging from patch-wise
to core-wise predictions may sufficiently smooth the effects of noisy labels at
this level. We emphasize that the AUC for both methods is at least 10% higher
than AUC achieved using conventional ultrasound machines [11], underlining the
strong capabilities of high-frequency ultrasound.
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Fig. 3. Heatmaps representing predictions of cancer (red) or benign (blue). The con-
fidence threshold is increased from left to right as [0.7, 0.8, 0.85, 0.9], progressively ex-
cluding more uncertain predictions. The top row is from cancerous core with Gleason
score 4+3; the bottom row is from a benign core.

3.2 Comparison of Uncertainty Methods

Quantification of predictive uncertainty could help clinical decision making dur-
ing the biopsy procedure by only relying on highly confident predictions and
discarding OOD and suspect samples. We examine EDL predictive uncertainty
using accuracy vs. confidence plots in this section, and illustrate how it may be
utilised to eliminate uncertain predictions while achieving high accuracy on the
confident ones. Then, we compare EDL predictive uncertainty with MC Dropout
[5] and deep ensemble [12] methods.

In our accuracy vs. confidence plot, Figure 2 (a), we plot core-based balanced
accuracy as a function of the confidence threshold τ ∈ [0, 1] used to filter out
underconfident patch-level predictions. Patches with predicted confidence less
than τ , i.e. predictive uncertainty more than 1−τ , are discarded. If at least 60%
of extracted patches for a biopsy core remain, the average of the remaining patch
predictions is used as core-based prediction. We observe the increase in core-
based accuracy as the threshold increases, showing that confident predictions
tend to be correct. As shown in Figure 2 (b), there is a natural trade-off, with
increased threshold values also resulting in increased numbers of rejected cores,
yet with well-calibrated uncertainty methods it is not necessary to discard a high
fraction of cores in order for uncertainty thresholding to result in meaningful
accuracy gains. In Figure 2 (c), we compare the quality of predictive uncertainty
of all methods via ECE score. Our experiments show that EDL achieves the
best calibration error while providing the best balance between high accuracy
and core retention at different threshold levels.

3.3 Model Demonstration

As a proof-of-concept for the clinical utility of our method, we applied our model
as a sliding window over entire RF images and generated a heatmap, where red
corresponds to a prediction of cancer and blue to a prediction of benign. Uncer-
tainty thresholds at various levels were applied to discard uncertain predictions
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- discarded predictions had their opacity decreased to 0. These maps were over-
laid over the corresponding B-mode images to visualize the spread of cancer. An
example of heatmaps for a cancerous and benign core are shown in Figure 3. The
cancerous image shows a large amount of red which focuses on two main regions
as the confidence threshold increases. By the results of Figure 1, we can say that
these loci are very likely to be cancerous lesions and good biopsy targets. The
benign image, on the other hand, shows a dominance of blue, with two small red
areas that disappear as the threshold increases. These are most likely areas of
OOD features on which the model correctly reported high levels of uncertainty.
These images show the subjective quality of our model’s performance and the
utility of an adjustable uncertainty threshold.

4 Conclusion

We proposed a model for confident PCa detection using micro-ultrasound. We
employed co-teaching to improve robustness to label noise, and used eviden-
tial deep learning to model the predictive uncertainty of the model. We find
these strategies to yield a significant improvement over baseline in the clini-
cally relevant metrics of accuracy vs. confidence. Our model provides crucial
confidence information to interventionists weighing the recommendations of the
model against their own expertise, which can be critical for the adoption of
precision biopsy targeting using TRUS.
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of Health Research (CIHR).
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