Skip to main content

Automating Blastocyst Formation and Quality Prediction in Time-Lapse Imaging with Adaptive Key Frame Selection

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Effective approaches for accurately predicting the developmental potential of embryos and selecting suitable embryos for blastocyst culture are critically needed. Many deep learning (DL) based methods for time-lapse monitoring (TLM) videos have been proposed to tackle this problem. Although fruitful, these methods are either ineffective when processing long TLM videos, or need extra annotations to determine the morphokinetics parameters of embryos. In this paper, we propose Adaptive Key Frame Selection (AdaKFS), a new framework that adaptively selects informative frames on per-input basis to predict blastocyst formation using TLM videos at the cleavage stage on day 3. For each time step, a policy network decides whether to use or skip the current frame. Further, a prediction network generates prediction using the morphokinetics features of the selected frames. We efficiently train and enhance the frame selection process by using a Gumbel-Softmax sampling approach and a reward function, respectively. Comprehensive experiments on a large TLM video dataset verify the performance superiority of our new method over state-of-the-art methods.

T. Chen and Y. Cheng–Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, M., Saeedi, P., Au, J., Havelock, J.: A deep learning approach for prediction of IVF implantation outcome from day 3 and day 5 time-lapse human embryo image sequences. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 289–293. IEEE (2021)

    Google Scholar 

  2. Gardner, D.K., Lane, M., Stevens, J., Schlenker, T., Schoolcraft, W.B.: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155–1158 (2000)

    Article  Google Scholar 

  3. Glujovsky, D., Farquhar, C., Retamar, A.M.Q., Sedo, C.R.A., Blake, D.: Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst. Rev. (6) (2016)

    Google Scholar 

  4. Herrero, J., Tejera, A., Albert, C., Vidal, C., de los Santos, M.J., Meseguer, M.: A time to look back: analysis of morphokinetic characteristics of human embryo development. Fertil. Steril. 100(6), 1602–1609 (2013)

    Google Scholar 

  5. Holte, J., et al.: Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum. Reprod. 22(2), 548–557 (2007)

    Article  Google Scholar 

  6. Huang, B., et al.: Elevated progesterone levels on the day of oocyte maturation may affect top quality embryo IVF cycles. PLOS ONE 11(1), e0145895 (2016)

    Article  Google Scholar 

  7. Jang, E., Gu, S., Poole, B.: Categorical reparametrization with Gumbel-Softmax. In: Proceedings International Conference on Learning Representations (ICLR), April 2017. https://openreview.net/pdf?id=rkE3y85ee

  8. Khosravi, P., et al.: Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digital Med. 2(1), 1–9 (2019)

    Article  Google Scholar 

  9. Kragh, M.F., Rimestad, J., Berntsen, J., Karstoft, H.: Automatic grading of human blastocysts from time-lapse imaging. Comput. Biol. Med. 115, 103494 (2019)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  11. Leahy, B.D., et al.: Automated measurements of key morphological features of human embryos for IVF. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 25–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_3

    Chapter  Google Scholar 

  12. Lemmen, J., Agerholm, I., Ziebe, S.: Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17(3), 385–391 (2008)

    Article  Google Scholar 

  13. Liao, Q., et al.: Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Commun. Biol. 4(1), 1–9 (2021)

    Article  MathSciNet  Google Scholar 

  14. Liu, Z., et al.: Multi-task deep learning with dynamic programming for embryo early development stage classification from time-lapse videos. IEEE Access 7, 122153–122163 (2019)

    Article  Google Scholar 

  15. Lockhart, L., Saeedi, P., Au, J., Havelock, J.: Automating embryo development stage detection in time-lapse imaging with synergic loss and temporal learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 540–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_52

    Chapter  Google Scholar 

  16. Lukyanenko, S., et al.: Developmental stage classification of embryos using two-stream neural network with linear-chain conditional random field. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 363–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_35

    Chapter  Google Scholar 

  17. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in LSTMs for activity detection and early detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1942–1950 (2016)

    Google Scholar 

  18. Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K.M., Ramsing, N.B., Remohí, J.: The use of morphokinetics as a predictor of embryo implantation\(\dagger \). Hum. Reprod. 26(10), 2658–2671 (2011). https://doi.org/10.1093/humrep/der256

  19. Motato, Y., de los Santos, M.J., Escriba, M.J., Ruiz, B.A., Remohí, J., Meseguer, M.: Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil. Steril. 105(2), 376–384 (2016)

    Google Scholar 

  20. Papanikolaou, E.G., et al.: Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. a randomized prospective study. Hum. Reprod. 20(11), 3198–3203 (2005)

    Google Scholar 

  21. Tran, D., Cooke, S., Illingworth, P.J., Gardner, D.K.: Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34(6), 1011–1018 (2019)

    Article  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Zeman, A., Maerten, A.-S., Mengels, A., Sharon, L.F., Spiessens, C., de Beeck, Hans Op: Deep learning for human embryo classification at the cleavage stage (Day 3). In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 278–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_21

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was partially supported by National Key R &D Program of China under grant No. 2019YFC0118802, National Natural Science Foundation of China under grants No. 62176231 and No. 62106218, Zhejiang Public Welfare Technology Research Project under grant No. LGF20F020013, Wenzhou Bureau of Science and Technology of China (No. Y2020082). D. Z. Chen’s research was supported in part by NSF Grant CCF-1617735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T. et al. (2022). Automating Blastocyst Formation and Quality Prediction in Time-Lapse Imaging with Adaptive Key Frame Selection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics