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Abstract. Developing an AI-assisted gland segmentation method from
histology images is critical for automatic cancer diagnosis and progno-
sis; however, the high cost of pixel-level annotations hinders its appli-
cations to broader diseases. Existing weakly-supervised semantic seg-
mentation methods in computer vision achieve degenerative results for
gland segmentation, since the characteristics and problems of glandu-
lar datasets are different from general object datasets. We observe that,
unlike natural images, the key problem with histology images is the con-
fusion of classes owning to morphological homogeneity and low color
contrast among different tissues. To this end, we propose a novel method
Online Easy Example Mining (OEEM) that encourages the network to
focus on credible supervision signals rather than noisy signals, there-
fore mitigating the influence of inevitable false predictions in pseudo-
masks. According to the characteristics of glandular datasets, we design
a strong framework for gland segmentation. Our results exceed many
fully-supervised methods and weakly-supervised methods for gland seg-
mentation over 4.4% and 6.04% at mIoU, respectively. Code is available
at https://github.com/xmed-lab/OEEM.

Keywords: Online Easy Example Mining · Histology Image · Gland
Segmentation · Wealy-supervised Semantic Segmentation.

1 Introduction

Accurate gland segmentation is one crucial prerequisite step to obtain reliable
morphological statistics that indicate the aggressiveness of tumors. With the
advent of deep learning and whole slide imaging, considerable efforts have been
devoted to developing automatic semantic segmentation algorithms from histol-
ogy images [12]. These methods require massive training data with pixel-wise
annotations from expert pathologists [3,9,23]. However, obtaining pixel-wise an-
notation for histology images is expensive and labor-intensive. To reduce the
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annotation cost, designing a weakly-supervised segmentation method that only
requires a patch-level label is highly desirable.

VOC

(a) (b)

GlaS

Zoom

Fig. 1. (a): Examples of VOC (general dataset) and GlaS (glandular dataset). The
blue region refers to glandular tissues, and the green region refers to non-glandular
tissues. The characteristics of GlaS are morphological homogeneity, obvious overlaps,
and low color contrast among different tissues. (b): Confusion regions (highlighted in
cyan) in weakly-supervised gland segmentation.

To our best knowledge, there are no prior studies for weakly-supervised
gland segmentation from histology images. For other medical datasets, weakly-
supervised segmentation methods are mainly based on multiple instance learning
(MIL) [21,4,20], which requires at least two types of image-level labels to train
the classifier.

However, this method is not applicable to our task since all our training
images contain glandular tissues, i.e., we only have one type of image-level la-
bel. Another limitation of MIL is the low quality of the pseudo-mask, which is
block-like and coarse-grained because MIL regards all pixels within one patch
as the same class. For general weakly-supervised semantic segmentation (WSSS)
approaches in computer vision, the pseudo-mask is more fine-grained with pixel-
level prediction via CAM [24]. Nevertheless, algorithms in general WSSS [5,1,22,2,16]
do not suit glandular datasets because its core problem is local activation result-
ing from different representations in one object. While for glandular datasets,
the key problem is confusion among classes, owning to the morphological homo-
geneity, obvious overlap, and low color contrast of targets.

As shown in Fig.1 (a), compared to the natural images with apparent color
differences, our gland images have a similar color distribution and morpholog-
ical affinity between different tissues. For these confusing regions in Fig.1 (b),
techniques in general object datasets like saliency detection [22] and affinity
learning [1] are invalid because these methods require salient differences between
targets and background.

To solve the confusion problem and avoid the above issues, our key idea is
that the network should highlight the training with credible supervision and
down-weight the learning with noisy signals. To this end, we propose the Online
Easy Example Mining (OEEM) to distinguish easy and confusing examples in
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the optimization. Specifically, we develop a metric based on the normalized loss
to achieve this goal, where pixels with lower losses are dynamically assigned
higher weights in a batch.

Notably, our method is different from the existing online hard example mining
methods [10,8]. For instance, online hard example mining [10] and focal loss [8]
in object detection are hard to transfer to weakly supervised scenarios, since
they amplify the noise in pseudo-mask.

Moreover, we design a powerful framework for weakly-supervised gland seg-
mentation and report its fully-supervised result of the segmentation stage. With
this strong baseline, our method excels many previous fully supervised meth-
ods [13,14,15] on the GlaS [11] dataset, notably outperforming the prior best
method [15] by 4.6% on mIoU. Importantly, even with such a high backbone,
our proposed OEEM further increases the performance by around 2.0% mIoU in
weakly settings. And our weakly-supervised result surpasses the influential and
general WSSS methods [17,6,2] by over 6.04% at mIoU.

The main contributions of our work are summarized as follows:

– We point out that the key problem of gland segmentation is the confusion
caused by the homogeneity of histology images, rather than the local acti-
vation problem that most WSSS methods in computer vision try to solve.

– We propose the Online Easy Example Mining (OEEM) to mine the credi-
ble supervision signals in pseudo-mask with proposed normalized loss, thus
mitigating the damage of confused supervisions for gland segmentation.

– We design a strong framework for gland segmentation. Our fully-supervised
and proposed weakly-supervised OEEM surpasses the existing fully- and
weakly-supervised methods for gland segmentation, respectively.

2 Method

2.1 Overall Framework

This part introduces the overall pipeline of weakly-supervised gland segmenta-
tion, consisting of two stages. As shown in Fig. 2, our framework starts from
the classification stage, which is trained using patch-level supervision only. Then
we synthesize the pseudo pixel-level mask based on CAM [24] for the training
set. The pseudo-masks with original images are then passed to the segmentation
stage in the manner of fully-supervised segmentation. To reduce the adverse im-
pacts resulting from the noise in pseudo-masks, we adopt the proposed OEEM
during the optimization of the segmentation model. Note that only the segmen-
tation network is used to generate final predictions. The details of these two
stages are shown below:

Classification:We denote the input image as X ∈ RC×H×W , and its patch-
level label as Y , where Y is a one-hot vector of [y1, y2, ..., yn] and n is the number
of classes in the dataset. feat = fcls(X,φfeat) is the predicted feature map via
network fcls and its parameters φfeat except that of classifier. Note that feature
maps of last three stages are fused with interpolations before the classifier for
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(1) Stage 1: Classification
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Fig. 2. Overview of our proposed weakly-supervised gland segmentation method with
OEEM. (a) Classification pipeline for pseudo-mask generation from CAM. (b) Segmen-
tation pipeline. We use weighted cross-entropy loss Lwce with weight map W l_norm for
multi-label patches. Here, the glandular tissues are shown in blue and non-glandular
tissues are shown in green.

better representation. Then we get the CAM M ∈ Rn×H×W by multiply the
weights of classifier φcls to feat without average pooling as:

M = fcls(X,φfeat) · φcls (1)

The idea of CAM is that the feature maps of CNN architecture contain spatial
information of the activated regions in the image, where the classification model
is paying attention to. We apply argmax operation on M along the category
dimension and get a 2-dim pseudo-mask P ∈ RH×W as Eq.2. P is subsequently
sent to segmentation stage.

P = argmax(M :,h,w),∀h,w (2)

Segmentation: We now train the segmentation model in a fully-supervised
manner using pseudo-mask P . Denoting the segmentation network as fseg with
parameters φseg, the eventual prediction result X̃ is derived as X̃ = fseg(X, φseg).
Due to the inevitable noisy responses in pseudo-mask, the supervision P intro-
duces many confusing signals to the optimization of segmentation. To cope with
this issue, we need to direct supervised learning by weakening the guidance in the
confusing region. Based on this motivation, we propose the OEEM to reweight
the loss map for better usage of credible and clean supervision.
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2.2 Online Easy Example Mining

Many solutions are proposed in general object-based weakly-supervised segmen-
tation, such as seed expansion[5], self-attention [17], sub-category clustering [2]
and affinity [1]. But due to the changed core problem, we are concerned about
how to deal with these confusing noises. Previous works apply offline loss weight
based on uncertainty [7], or online loss clip relying on tuning hyperparameters
[?]. Besides, some sampling methods like OHEM [10], and focal loss [8] improve
the training efficiency via mining the hard examples in fully-supervised segmen-
tation. But the noises will be mined together with hard examples in our case.

Unlike the above methods, we propose the online easy example mining to
learn from the credible supervision signals dynamically. Specifically, our OEEM
modifies the standard cross-entropy loss Lce by multiplying a loss weight via a
metric that indicates the difficulty.

Denote our segmentation prediction map X̃ and ground truth map Y . We
realize the reweighting scheme by the weighted cross-entropy loss as:

Lwce = −
w∑

j=0

h∑
i=0

W i,j · log
exp(X̃Y i,j ,i,j)∑C
k=1(expX̃k,i,j)

· 1 (3)

where W ∈ RH×W is the loss weight. To get this loss weight, we pick the
loss scattered on loss map L ∈ RH×W and confidence on predicted score map as
metrics to indicate the learning difficulty. And base on these metrics, we propose
four types of loss weight maps to mine the easy examples.

The first two weight types are based on the metric of confidence. The motiva-
tion of Eq.4 is that easy examples are usually of high confidence. We firstly apply
softmax operation sm on the category dimension to normalize the score to [0, 1],
and select the maximum value as metric to form the weight map W c_max. The
second type Eq.5 uses the difference of confidence as the metric, since comparable
confidences indicate harder examples.

W c_max = max((sm(X̃ :,h,w))),∀h,w (4)

W c_diff = max((sm(X̃ :,h,w)))−min((sm(X̃ :,h,w))),∀h,w (5)

The other two types are based on the loss value. Different from the confidence,
the loss is obtained from both confidence and pseudo-ground-truth with more
information. The noises with high confidences on the false category have high
loss values, and those pixels supervised by clean labels have lower loss values.
To get higher loss weight for easy examples, we apply a minus sign to the loss
map L and deploy the softmax function sm on the hw dimension with a division
of its mean value. We name this process to normalized loss as Eq.6. At last, we
combine max confidence and normalized loss as Eq.7.

W l_norm =
sm(−L)

mean(sm(−L))
(6)
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W lc_mix =
sm(−L)

mean(sm(−L))
·max((sm(X̃ :,h,w))),∀h,w (7)

Empirical experience suggests that W l_norm in Eq.6 performs best. So we
select it as the metric of reweighting. And note that some images only contain
one type of artifact that should not yield any noise. Hence, we use original cross-
entropy loss Lce without OEEM for images with number of classes n = 1. The
final loss of segmentation is then expressed as:

L =

{
Lwce n > 1, s.t.W = W l_norm

Lce n = 1.
(8)

2.3 Network training

Our model is implemented with PyTorch and is trained with one NVIDIA
GeForce RTX 3090 card. For the classification part, we adopt ResNet38 [18]
as the backbone. We use an SGD optimizer with a polynomial decay policy at a
learning rate of 0.01. The batch size is 20, and the model is trained for 20 epochs.
Data augmentation includes random flip, random resized crop, and all patches
are normalized by the calculated mean and variance of the GlaS dataset. We also
utilize the multi-scale test with scales of [1, 1.25, 1.5, 1.75, 2] for CAM genera-
tion. For the segmentation part, we use PSPNet [23] with backbone ResNet38.
The optimizer is SGD in poly scheduler at learning rate 5e − 3, the batch size
is 32, and the model is trained for 10000 iterations. Data augmentation includes
random flip, random crop, and distortion. In the inference process, we apply a
multi-scale test with scales of [0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3] at crop size 320
and stride 256 for robust results. Note that all the weakly-supervised methods
in Tab.1 deploy the same settings for fair comparisons.

3 Experiments

3.1 Dataset

We carry out experiments on the Gland Segmentation in Histology Images Chal-
lenge (GlaS) Dataset [11]. It contains 165 images derived from 16 Hematoxylin,
and Eosin (H&E) stained histological Whole Slide Images (WSIs) of stage T3 or
T42 colorectal adenocarcinoma.

Following previous works [13,14,15], we split the data into 85 training images
and 80 test images, which are separated by patients as original dataset without
patch shuffle. There is no classifiable image-level label, since glands exist in each
image. So we crop patches at side 112 and stride 56 to get balanced patch-level
labels from masks, with a one-hot label indicating whether it contains glandular
and non-glandular tissues for each patch. Note that all the patches are merged
to the original sizes for evaluation in the metric of mIoU.
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Table 1. Results of gland segmentation on the GlaS dataset. “-” refers to not reported.

Method Backbone Supervision mIoU (%) Dice (%) F1 (%)
Unet [9] Unet fully 65.34 79.04 77.78

Res-UNet [19] Res-UNet fully 65.95 79.48 78.83
MedT [13] Vision Transformer fully 69.61 82.08 81.02

KiU-Net [14] KiU-Net fully 71.31 83.25 -
UCTransNet [15] UCTransNet fully 82.24 90.25 -
ours w/o OEEM PSPNet & ResNet38 fully 86.84 92.96 93.24

SEAM [16] PSPNet & ResNet38 weakly 66.11 79.59 79.50
Adv-CAM [6] PSPNet & ResNet38 weakly 68.54 81.33 81.36
SC-CAM [2] PSPNet & ResNet38 weakly 71.52 83.40 83.32

ours w/o OEEM PSPNet & ResNet38 weakly 75.64 86.13 82.36
OEEM PSPNet & ResNet38 weakly 77.56 87.36 87.35

3.2 Compare with State-of-the-arts

Compare with fully-supervised methods.We compare the final results after
the segmentation step in Tab. 1. The result of our method without OEEM shows
that we have already constructed a robust baseline model that excels in many
fully-supervised settings like Unet [9] and MedT [13]. This suggests that our
classification model based on ResNet38 with a multi-test mechanism performs
quite well for the pseudo-mask generation.
Compare with weakly-supervised methods. In Tab.1, we firstly propose a
powerful baseline, whose fully-supervised result is 86.84%, significantly beyond
previous state-of-the-arts. Based on this framework, our weakly-supervised result
is higher than most fully-supervised methods. Even under such a high baseline,
our OEEM still works fine and increases our baseline from 75.64% to 77.56%.
We also experimented with other influential weakly-supervised methods in the
general object segmentation domain, such as SEAM, SC-CAM, and Adv-CAM.
There is a large margin of at least 6.04% comparing to the proposed OEEM
method. This is because the confusion owing to morphological homogeneity, low
color contrast and serious overlap of tissue cells obstructs the network learning,
leading to low quality pseudo-masks of classification stage.
Visualization Here we show some qualitative visualization results compared to
SEAM [16] in Fig.3. The SEAM prediction appears to be coarse and inaccurate
with many square-shaped regions. This suggests that SEAM is unsuitable for
the GlaS dataset and the Affine Transformation design of the method further
poses some difficulties in the training process. In contrast, our OEEM prediction
is more accurate and smooth, which seems quite similar to the fully-supervised
result.

3.3 Ablation Study

Performance gains in overall framework. We show the performances gains
in the framework by listing the results of different predictions. The SEAM is dif-
ferent from our framework in the classification stage, with a drop at mIoU 15.89%
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Ground-truth OEEM Ours WeaklySC-CAM Weakly [2]Original Image Ours Fully

Fig. 3. Qualitative results compared with ground-truth, fully and other weakly results.
The glandular tissues are shown in blue and non-glandular tissues are shown in green.

owning to the shifted core problem in the histology dataset. The performance
gain of our framework from CAM to pseudo-mask and segmentation prediction
are 2.12%, 9.64% respectively. Note that OEEM shares the same pseudo-mask
with our baseline and improves the performance by about 2%.

Table 2. Performance of the framework at metric mIoU (%). CAM denotes the output
of the classification stage on training set. Pseudo-mask is the refined CAM after using
the patch-level labels to eliminate the non-existing tissues. Prediction is the result of
the segmentation state on testing set.

Method CAM Pseudo-mask Prediction
SEAM [16] 52.03 60.48 66.11

ours w/o OEEM 67.92 70.04 75.64
OEEM 77.56

Effectiveness of OEEM with normalized loss. For the segmentation part,
we compare four OEEM weight metrics and OHEM [10] with our baseline result
in Tab. 3. Unlike hard example mining in fully supervised learning [10], pseudo-
masks from weakly supervision exist massive noise. It means hard samples and
false samples are intertwined and indistinguishable. So we see that OHEM even
introduces a performance drop due to the noise included. Thus, we mine the easy
samples to make the supervision credible and mitigate the influence of noise from
hard samples. Among which, normalized loss performs the best. This could be
attributed to the help of pseudo ground-truth in computing the weight metrics.
Additionally, normalization via softmax amplifies the loss gaps and emphasizes
the clean samples more. Compared to the baseline model, our OEEM strategy
improves 1.92% in mIoU, which is essential to our pipeline.
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Table 3. Segmentation results of reweighting metrics in OEEM with baselines.

Metric Baseline OHEM [10] W c_max W c_diff W l_norm W lc_mix

mIoU (%) 75.64 75.49 75.93 75.43 77.56 77.19

4 Conclusion

This paper proposes a novel online easy example mining method for weakly-
supervised gland segmentation from histology images, where only patch-level
labels are provided. Our main motivation is that, unlike natural images, the key
problem of histology images is the confusion among classes due to its low color
contrast among different tissues, making it challenging for gland segmentation.
Such a property degenerates many existing weakly-supervised methods in com-
puter vision. Our proposed OEEM focuses on training with credible supervision
and down-weight the training with noisy signals. Experimental results demon-
strated that our method can outperform other weakly-supervised methods by a
large margin.
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