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Abstract. Noisy labels collected with limited annotation cost prevent
medical image segmentation algorithms from learning precise seman-
tic correlations. Previous segmentation arts of learning with noisy la-
bels merely perform a pixel-wise manner to preserve semantics, such as
pixel-wise label correction, but neglect the pair-wise manner. In fact,
we observe that the pair-wise manner capturing affinity relations be-
tween pixels can greatly reduce the label noise rate. Motivated by this
observation, we present a novel perspective for noisy mitigation by in-
corporating both pixel-wise and pair-wise manners, where supervisions
are derived from noisy class and affinity labels, respectively. Unifying
the pixel-wise and pair-wise manners, we propose a robust Joint Class-
Affinity Segmentation (JCAS) framework to combat label noise issues in
medical image segmentation. Considering the affinity in pair-wise man-
ner incorporates contextual dependencies, a differentiated affinity rea-
soning (DAR) module is devised to rectify the pixel-wise segmentation
prediction by reasoning about intra-class and inter-class affinity rela-
tions. To further enhance the noise resistance, a class-affinity loss cor-
rection (CALC) strategy is designed to correct supervision signals via
the modeled noise label distributions in class and affinity labels. Mean-
while, CALC strategy interacts the pixel-wise and pair-wise manners
through the theoretically derived consistency regularization. Extensive
experiments under both synthetic and real-world noisy labels corrobo-
rate the efficacy of the proposed JCAS framework with a minimum gap
towards the upper bound performance. The source code is available at
https://github.com/CityU-AIM-Group/JCAS.

Keywords: Class and affinity · Loss correction · Noisy label.

1 Introduction

Image segmentation, as one of the most essential tasks in medical image analysis,
has received lots of attention over the last decades. This task aims to assign a se-
mantic label for each pixel, further benefiting various clinical applications such as
treatment planning and surgical navigation [9]. Deep learning algorithms based
on convolutional neural networks (CNNs) have achieved remarkable progress
in medical image segmentation, but they require a large amount of training
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data with precise pixel-level annotations that are extremely expensive and labor-
intensive to obtain [10]. With limited budgets and efforts, the resulting dataset
would be noisy, and the presence of label noises may mislead the segmentation
model to memorize wrong semantic correlations, resulting in severely degraded
generalizability [8,23]. Hence, developing medical image segmentation techniques
that are robust to noisy labels in training data is of great importance.
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Fig. 1. A toy example to illustrate the
comparison between pixel-wise class label
(C) and pair-wise affinity label (A). (C1,
C2) True class label and the one-hot en-
coding. (C3, C4) Noisy class label and the
one-hot encoding. (C5) Class-level noise
transition matrix with noise rate of 44%.
(A1) True affinity label. (A2) Noisy affin-
ity label. (A3) Affinity-level noise transi-
tion matrix with noise rate of 23%.

Solutions towards noisy label issues
in image classification tasks have been
extensively explored [11,15,17,22,23],
while pixel-wise label noises in segmen-
tation tasks have not been well-studied,
especially for medical image analysis.
Previous solutions for medical image
segmentation with noisy labels can be
summarized into three aspects. Firstly,
some researchers model the noisy label
distribution through either the confu-
sion matrix [20] or noise transition ma-
trix (NTM) [6,7], and then leverage the
modeled distribution for pixel-wise loss
corrections. Secondly, pixel-wise label
refurbishments are implemented by the
spatial label smoothing regularization
[19] or the convex combination with su-
perpixel predictions [10]. Thirdly, pixel-
wise resampling and reweighting strate-
gies are designed to concentrate the seg-
mentation model on learning reliable
pixels. For instance, Tri-network et al.
[21] contains three collaborative networks and adaptively selects informative
samples according to the consensus between predictions from different networks.
Wang et al. [16] leverage meta-learning to automatically estimate an importance
map, thereby mining reliable information from important pixels.

Despite the impressive performance in promoting generalizability, almost all
existing image segmentation methods tackle label noise issues merely in a pixel-
wise manner. Complementing the widely utilized pixel-wise manner, we make the
first effort in exploiting the affinity relation between pixels within an image for
noisy mitigation in a pair-wise manner. Unlike pixel-wise manner that regular-
izes pixels with class label (Fig. 1 C1-4), pair-wise manner constrains relations
between pixels with affinity label (Fig. 1 A1-2), indicating whether two pixels
belong to the same category. The motivation behind this conception is to reduce
the ratio of label noises. Intuitively, if one pixel in a pair is mislabeled (e.g. the
red rectangle in Fig. 1) or even both pixels are mislabeled (e.g. the orange rect-
angle in Fig. 1), the affinity label of this pair might be correct, thereby reducing
the noise rate (e.g. from 44% to 23% in Fig. 1). Moreover, affinity relations in
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Fig. 2. Illustration of Joint Class-Affinity Segmentation (JCAS) framework, including
(a) differentiated affinity reasoning and (b) class-affinity loss correction.

pair-wise manner comprehensively incorporate intra-class and inter-class contex-
tual dependencies, and thus it may be beneficial to explicitly differentiate them
for correlated information propagation and irrelevant information elimination.

Unifying the pixel-wise and pair-wise manners, we propose a robust Joint
Class-Affinity Segmentation (JCAS) framework to combat label noise issues in
medical image segmentation. JCAS framework has two supervision signals, de-
rived from noisy class labels and noisy affinity labels, for regularizing pixel-wise
predictions and pair-wise affinity relations, respectively. These two supervision
signals in JCAS are complementary to each other since the pixel-wise one pre-
serves semantics and the pair-wise one reduces noise rate. Pair-wise affinity rela-
tions derived at the feature level model the contextual dependencies, indicating
the correlation between any two pixels in a pair. Considering differentiated con-
textual dependencies can prevent undesirable aggregations, we devise a differen-
tiated affinity reasoning (DAR) module to guide the refinement of pixel-wise pre-
dictions with differentiated affinity relations. DAR module differentiates affinity
relations to explicitly aggregate intra-class correlated information and eliminate
inter-class irrelevant information. To further correct both pixel-wise and pair-wise
supervision signals, we design a class-affinity loss correction (CALC) strategy.
This strategy models noise label distributions in class labels and affinity labels
as two NTMs for loss correction, meanwhile, it unifies the pixel-wise and pair-
wise supervisions through the theoretically derived consistency regularization,
thereby facilitating the noise resistance. Extensive experiments under both syn-
thetic and real-world noisy labels demonstrate the effectiveness of the proposed
JCAS framework with a minimum gap towards the upper bound performance.

2 Joint Class-Affinity Segmentation Framework

The proposed Joint Class-Affinity Segmentation (JCAS) framework is illustrated
in Fig. 2. Formally, we have access to training images X = {X ∈ RH×W×3} with
spatial dimension of H ×W . The corresponding one-hot encoding of pixel-wise
noisy labels is denoted as Y = {Ỹ ∈ RH×W×C}, where C indicates the number
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of classes. We aim to learn a segmentation network that is robust to label noises
in Y during the training process and could derive clean labels for test data. Given
an input training image X, a feature map f ∈ Rh×w×d is first computed from
the feature extractor F . Note that h, w, and d denote the height, width, and
channel number of the feature map. Then, the feature map is passed through
two branches for estimating pixel-wise predictions (upper branch in Fig. 2) and
pair-wise affinity relations (lower branch in Fig. 2), respectively.

In the upper branch, a classifier C with softmax is used to produce the coarse
segmentation result Q. In the lower branch, an affinity generator is introduced
to generate the affinity map P ′ ∈ [0, 1]n×n where n=h×w, and the generator is
formulated as P ′(k1, k2) = norm( f(i1,j1)

>f(i2,j2)
‖f(i1,j1)‖2‖f(i1,j1)‖2

). (i·, j·) is the coordinate of
a pixel in feature map, and (k1, k2) is the coordinate in affinity map. Note that k1
and (i1, j1) denote the position of the same pixel. The operator norm(·) performs
normalization along each row to ensure affinity relations towards pixel k1 are
summed to 1, i.e.,

∑n
k2

P ′(k1, k2) = 1. The obtained affinity map P ′ measures
feature similarity between two pixels. Since intra-class pixels share the similar
semantic features, intra-class pixel pairs usually show large similarity scores in
P ′, which highlights these pixel pairs belonging to the same class. Hence, P ′

reveals the intra-class affinity relations. Then, we devise a differentiated affinity
reasoning (DAR) module (Fig. 2 (a), Sec. 2.1) to obtain refined segmentation
result P , where the affinity map P ′ derived in the lower branch is leveraged
to guide the refinement of previously generated coarse segmentation result Q
in the upper branch. Both pixel-wise segmentation prediction P and pair-wise
affinity map P ′ are regularized through the proposed class-affinity loss correction
(CALC) strategy (Fig. 2 (b), Sec. 2.2). The optimized JCAS framework produces
the refined segmentation result P as the final prediction in test phase.

2.1 Differentiated Affinity Reasoning (DAR)

In the image segmentation task, each image is equipped with a ground truth map,
indicating pixel-wise semantic class label. Pixel-wise supervision signal cannot
regularize the segmentation network to model the contextual dependencies from
isolated pixels. Hence, we incorporate the contextual dependency embedded in
the pair-wise affinity map P ′ to guide the refinement of the pixel-wise segmen-
tation result Q. Moreover, different from existing affinity methods [18,24] that
aggregates contextual information as a mixture and may introduce undesirable
contextual aggregations, we propose a differentiated affinity reasoning (DAR)
module to explicitly distinguish intra-class and inter-class contextual dependen-
cies and leverage the differentiated contexts to rectify segmentation predictions.

In addition to previously calculated pair-wise affinity map P ′ that represents
intra-class affinity relation, we infer the reverse affinity map P ′

re = norm(1 −
P ′). The reverse affinity map measures the dissimilarity between two pixels and
reveals the inter-class affinity relations. The proposed DAR module performs
intra-class and inter-class affinity reasonings, respectively. To be specific, the
intra-class affinity reasoning aims to aggregate correlated information according
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to the intra-class affinity relations P ′, and the inter-class affinity reasoning aims
to eliminate irrelevant information according to the inter-class affinity relations
P ′

re, which can be formulated as:

P intra(k1) = P (k1) +

n∑
k2

P ′(k1, k2)Q(k2);P inter(k1) = P (k1)−
n∑
k2

P ′
re(k1, k2)Q(k2).

(1)
The refined pixel-wise prediction P is obtained through combining both intra-
class and inter-class affinity reasoning results, i.e., P = 1

2 (P intra + P inter).
With the proposed DAR module, the correct predictions are strengthened, and
the incorrect segmentation results are debiased and rectified.

2.2 Class-Affinity Loss Correction (CALC)

In multi-class image segmentation task, the widely used cross entropy loss is com-
puted in a pixel-wise manner and formulated as LC

CE = −
∑H×W

k Ỹ (k) logP (k).
However, directly minimizing the empirical risk of training data with respect to
noisy labels Ỹ will lead to severely degraded generalizability. To reduce the noise
rate, we introduce the pair-wise manner, and the corresponding affinity label is
derived by Y ′(k1, k2) = Y (k1)>Y (k2). Only if two pixels share the same cate-
gory, the value in the affinity label Y ′ will be 1, otherwise Y ′ will be 0. Although
the pair-wise manner can greatly reduce the noise rate compared to the pixel-
wise manner as demonstrated in Fig. 1, there still exist noises, and thus the
binary entropy loss LA

Bi = −
∑H×W

k Ỹ (k) logP ′(k) + (1− Ỹ (k)) log(1−P ′(k))
for affinity map supervision cannot guarantee the robustness of segmentation
model towards label noises, resulting in biased semantic correlations. To facilitate
the noise tolerance of LC

CE and LA
Bi, we devise the class-affinity loss correction

(CALC) strategy, including the class-level loss correction LC
LC and affinity-level

loss correction LA
LC . Meanwhile, a theoretically derived class-affinity consistency

regularization LCACR is advanced to unify pixel-wise and pair-wise supervisions.
Class-level Loss Correction. We model the label noise distributions in

noisy class labels through a noise transition matrix (NTM) TC ∈ [0, 1]C×C ,
which specifies the probability of clean label m translating to noisy label n via
TC(m,n) = p(Ỹ = n|Y = m). Hence, the probability of one pixel being pre-
dicted as Ỹ = n is computed by p(Ỹ = n) =

∑C
m=1 p(Y = m) ·TC(m,n), where

p(Y ) is the clean class probability. Then the modeled noise label distribution is
exploited to correct the supervision signal (i.e. LC

CE) derived from noisy labels
via LC

LC = −
∑H×W

k Ỹ (k) log[P (k)TC ]. This corrected loss encourages the con-
sistency between noisy translated predictions and noisy class labels. Therefore,
once the true NTM is obtained, the desired estimation of clean class predictions
can be recovered by the output of segmentation model P . For the estimation of
the true NTM, we exploit the volume minimization regularization in [11].

Affinity-level Loss Correction. Similar to the class-level NTM, affinity-
level NTM is defined as TA ∈ [0, 1]2×2, modeling the probability of clean affinity
labels flipping to noisy affinity labels. Then, we exploit the modeled label noise
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Fig. 3. Illustration of dataset with different kinds of label noises.

distribution NTM to rectify the supervision signal (i.e. LA
Bi) for affinity relation

learning. Therefore, the affinity-level loss correction is formulated as LA
LC =

−
∑H×W

k Ỹ (k) log[P ′(k)TA] + (1− Ỹ (k)) log(1− P ′(k)TA).
Class-Affinity Consistency Regularization. To unify the pixel-wise and

pair-wise supervisions, we bridge the class-level and affinity-level NTMs in The-
orem 5.1. A theoretical proof for the Theorem is provided in Sec. 5 supplemen-
tary. Hence, the class-affinity consistency regularization is defined as LCACR =
‖TC→A − TA‖2.

Combining the above defined losses, we obtain the joint loss of the proposed
JCAS framwork as: L = LC

LC + LA
LC + λLCACR, which interacts the pixel-wise

and pair-wise manners. Note that λ is the weighting factor of LCACR.

Theorem 1. Assume that the class distribution of dataset denoting proportions
of pixel number is N = [N1, N2, ..., NC ], and the noise is class-dependent1. Given
a class-level NTM TC , the translated affinity-level NTM TC→A is calculated by

TC→A(0, 0) = 1− TC→A(0, 1), TC→A(0, 1) =
∑

m[Nm
∑

n TC(m,n)]2−
∑

m(Nm)2‖TC‖22∑
m[Nm(

∑
m Nm−Nm)]

,

TC→A(1, 0) = 1− TC→A(1, 1), TC→A(1, 1) =
∑

m(Nm)2‖TC‖22∑
m(Nm)2

.

(2)

3 Experiments

Dataset. We validate the proposed JCAS method on the surgical instrument
dataset Endovis18 [1]. It consists of 2384 images annotated with the instrument
part labels, and the label space includes shaft, wrist and clasper classes, as shown
in Fig. 3. The dataset is split into 1639 training images and 596 test images
following [5]. Each image is resized into a resolution of 256×320 in preprocessing.
Noise Patterns. To comprehensively verify the robustness of JCAS, we con-
duct experiments with both synthetic label noise (i.e., elipse, symmetric and
asymmetric noises) and real-world label noise (i.e., noisy pseudo labels in
source-free domain adaptation (SFDA)), as compared in Fig. 3. Specifically, the
ellipse noisy label is a kind of weak annotation generated by drawing the minimal
ellipse given the true segmentation label, greatly reducing the manual annotation
cost. To simulate errors in the annotation process, ellipse labels are randomly
dilated and eroded. Moreover, two commonly used label noises in the machine
learning field, including symmetric and asymmetric noises with the rate of 0.5
1 Real-world label noises can be well approximated via class-dependent noises [4,6,11].
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Table 1. Comparison under four label noises. Best and second best results are high-
lighted and underlined. ‘w/ Affinity’ introduces pair-wise supervision LA

Bi to backbone.

Noises Method Shaft Wrist Clasper Average
Dice (%) Jac (%) Dice (%) Jac (%) Dice (%) Jac (%) Dice (%) Jac (%)

Upper bound 88.740 81.699 65.045 52.627 70.531 56.618 74.772 63.648
RAUNet (19′) [13] 83.137 74.139 56.941 43.215 61.081 45.883 67.053 54.412
LWANet (20′) [12] 81.945 72.735 53.626 40.886 64.364 49.781 66.645 54.468

Ellipse

CSS (21′) [14] 84.577 75.736 57.597 43.687 63.686 48.347 68.620 55.923
MTCL (21′) [19] 72.719 60.540 39.386 27.474 49.662 35.085 53.922 41.033
SR (21′) [23] 79.966 69.621 53.540 39.747 60.179 44.775 64.561 51.381

VolMin (21′) [11] 81.320 70.758 60.470 46.408 58.203 42.524 66.664 53.230
Baseline [3] 79.021 68.097 42.069 29.582 55.489 40.175 58.860 45.951
w/ Affinity 82.158 72.339 49.128 35.455 58.933 43.594 63.406 50.463
w/ DAR 82.698 72.992 52.207 38.442 61.544 46.027 65.483 52.487
w/ CALC 82.973 73.126 61.885 47.527 60.416 44.821 68.425 55.158

Ours (JCAS) 84.683 75.378 65.599 51.623 63.871 48.356 71.384 58.452
RAUNet (19′) [13] 68.044 54.397 31.581 20.676 41.302 27.819 46.976 34.297
LWANet (20′) [12] 0.294 0.150 10.089 5.908 10.228 5.489 6.870 3.849

Symmetric

CSS (21′) [14] 86.555 78.451 32.363 20.767 53.364 37.901 57.427 45.706
MTCL (21′) [19] 78.480 67.855 50.011 38.013 55.515 40.411 61.336 48.760
SR (21′) [23] 86.648 78.823 58.217 46.870 64.643 50.120 69.836 58.604

VolMin (21′) [11] 86.811 78.834 63.712 51.259 66.604 52.096 72.376 60.730
Baseline [3] 85.021 76.419 57.026 44.563 63.255 48.395 68.434 56.459
Ours (JCAS) 88.285 80.692 65.759 53.487 68.129 53.821 74.058 62.667

RAUNet (19′) [13] 87.255 79.983 59.462 46.639 67.347 52.801 71.355 59.808
LWANet (20′) [12] 0.015 0.007 40.548 30.683 9.060 4.825 16.541 11.838

Asymmetric

CSS (21′) [14] 89.825 83.543 43.743 30.569 69.285 54.758 67.618 56.290
MTCL (21′) [19] 74.544 62.525 41.433 30.533 48.077 33.676 54.685 42.244
SR (21′) [23] 86.360 78.055 62.854 49.651 65.483 50.962 71.566 59.556

VolMin (21′) [11] 86.840 78.796 63.345 51.137 65.220 50.996 71.802 60.310
Baseline [3] 84.497 75.607 58.717 46.060 61.662 46.770 68.292 56.146
Ours (JCAS) 88.247 80.730 67.298 54.922 67.686 53.436 74.410 63.029

RAUNet (19′) [13] 73.370 61.568 56.063 42.570 45.979 31.720 58.471 45.286
LWANet (20′) [12] 75.377 64.457 53.203 39.799 48.558 34.191 59.046 46.149

SFDA

CSS (21′) [14] 74.419 64.261 61.765 47.880 45.749 31.709 60.644 47.950
MTCL (21′) [19] 72.289 60.346 51.095 37.972 38.762 25.567 54.048 41.295
SR (21′) [23] 75.992 64.835 57.370 43.863 40.471 27.388 57.944 45.362

VolMin (21′) [11] 76.641 65.063 58.285 44.389 41.780 28.324 58.902 45.925
Baseline [3] 76.107 64.858 56.259 42.740 41.364 28.091 57.910 45.230
Ours (JCAS) 76.540 65.300 59.904 46.104 48.725 34.283 61.723 48.562

[11,23], are used to evaluate JCAS. Furthermore, we introduce Endovis17 [2]
containing 1800 annotated images with domain shift to Endovis18, and generate
realistic noisy labels from source only model trained on Endovis17.
Implementation. The proposed JCAS framework is implemented with Py-
Torch on Nvidia 2080Ti. DeepLabV2 [3] with the pre-trained encoder ResNet101
is our segmentation backbone. The initial learning rate is set as 1e-4 for the pre-
trained encoder and 1e-3 for the rest of trainable parameters. We adopt a batch
size of 3 and the maximum epoch number of 200. The weighting factor λ is 0.01.
The segmentation performance is assessed by Dice and Jac scores.
Experiment results. Experimental comparison results under four types of la-
bel noises are presented in Table 1, in which we list the performance of upper
bound (i.e., model trained with clean labels), three state-of-the-arts [13,12,14] in
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instrument segmentation, three label noise methods [19,23,11], our backbone [3],
and the proposed JCAS. For a fair comparison, we reimplement [19,23,11] us-
ing the same backbone [3]. Compared with the aforementioned baselines, JCAS
shows the minimum performance gap with the upper bound under all kinds of
label noises, demonstrating the robustness of JCAS. Despite the satisfactory
performance under ellipse and SFDA noises, LWANet [12] cannot deal with the
other two types of noises, resulting in 6.870% and 16.541% Dice scores. In con-
trast, JCAS shows comparable result to the upper bound with only 0.981% and
0.388% Jac gaps under symmetric and asymmetric label noises. We further il-
lustrate typical surgical instrument segmentation results in Fig. 4, validating the
superiority of JCAS over baseline methods in the qualitative aspect.

To analyze the influence of JCAS, we then conduct ablation study under
ellipse noises. With the pair-wise manner (‘w/ Affinity’), the noise rate of super-
vision signals is greatly reduced, yielding an increment of 4.512% in Jac, while
the increased memory overhead is negligible (from 780.71MB to 784.67MB). The
devised DAR module (‘w/ DAR’) is also verified to be effective in differentiating
contexture dependencies for the refinement of segmentation predictions, achiev-
ing an improvement of 9.207% Jac score compared to the backbone. Moreover,
the proposed CALC strategy further rectifies supervision signals derived from
noisy labels and boosts the segmentation performance with 5.965% Jac gain. To
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verify each component in DAR and CALC, we further ablate intra-class affinity
reasoning (1st item in Eq. (1)), inter-class affinity reasoning (2nd item in Eq.
(1)), LC

LC , LA
LC , and LCACR under ellipse noises, obtaining 55.795%, 56.180%,

55.203%, 55.179%, 56.612% Jac. The performance of ablating each component is
degraded compared to 58.452% Jac achieved by our method (Table 1), verifying
the effectiveness of individual component in mitigating label noise issue.

Furthermore, we show test Jac curves in Fig. 5. While [11,13] obtain promise
results under ellipse and SFDA noises, they reach a high Jac in the early stage
and then decrease, overfitting to the other two noises. Notably, our JCAS con-
verges to high performance under four noises and demonstrates more stable
training process compared to [12,14,19], verifying its noise-resistant property.

4 Conclusion

In this paper, we propose a robust JCAS framework to combat label noise is-
sues in medical image segmentation. Complementing the widely used pixel-wise
manner, we introduce the pair-wise manner by capturing affinity relations among
pixels to reduce noise rate. Then a DAR module is devised to rectify pixel-wise
segmentation predictions by reasoning about intra-class and inter-class affinity
relations. We further design a CALC strategy to unify pixel-wise and pair-wise
supervisions, and facilitate noise tolerances of both supervisions. Extensive ex-
periments under four noisy labels corroborate the noise immunity of JCAS.

5 Supplementary

5.1 Proof of Theorem 5.1

Theorem 2. Assume that the class distribution of dataset denoting proportions
of pixel number is N = [N1, N2, ..., NC ], and the noise is class-dependent. Given
a class-level NTM TC , the translated affinity-level NTM TC→A is calculated by

TC→A(0, 0) = 1− TC→A(0, 1), TC→A(0, 1) =
∑

m[Nm
∑

n TC(m,n)]2−
∑

m(Nm)2‖TC‖22∑
m[Nm(

∑
m Nm−Nm)]

,

TC→A(1, 0) = 1− TC→A(1, 1), TC→A(1, 1) =
∑

m(Nm)2‖TC‖22∑
m(Nm)2

.

(3)

Proof. Noise transition matrix (NTM) TC ∈ [0, 1]C×C specifies the probabil-
ity of clean label Y = m translating to noisy label Ỹ = n, which can be
formulated as TC(m,n) = p(Ỹ = n|Y = m). Taking the entry TC→A(0, 0)
of affinity-level NTM for example, we first calculate the number of pixel pairs
with clean affinity labels Y ′ = 0 through

∑
m6=m′ NmNm′TC(m,n)TC(m

′, n′),
and compute the number of data pairs with clean affinity labels Y ′ = 0 and
noisy affinity labels Ỹ ′ = 0 via

∑
m 6=m′,n6=n′ NmNm′TC(m,n)TC(m

′, n′). Hence,
the proportion of these two terms derives the element TC→A(0, 0) = p(Ỹ ′ =
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0|Y ′ = 0) =
∑

m6=m′,n6=n′ NmNm′TC(m,n)TC(m′,n′)∑
m6=m′ NmNm′TC(m,n)TC(m′,n′) . Similar to the derivation of

entry TC→A(0, 0), we can obtain the remaining three entries, and thus we have:

TC→A(0, 0) =

∑
m 6=m′,n6=n′ NmNm′TC(m,n)TC(m

′, n′)∑
m 6=m′ NmNm′TC(m,n)TC(m′, n′)

, (4)

TC→A(0, 1) =

∑
m 6=m′,n=n′ NmNm′TC(m,n)TC(m

′, n′)∑
m 6=m′ NmNm′TC(m,n)TC(m′, n′)

, (5)

TC→A(1, 0) =

∑
m=m′,n6=n′ NmNm′TC(m,n)TC(m

′, n′)∑
m=m′ NmNm′TC(m,n)TC(m′, n′)

, (6)

TC→A(1, 1) =

∑
m=m′,n=n′ NmNm′TC(m,n)TC(m

′, n′)∑
m=m′ NmNm′TC(m,n)TC(m′, n′)

. (7)

Further, note that∑
m6=m′

NmNm′TC(m,n)TC(m
′, n′)

=
∑

m 6=m′

(Nm

∑
n

TC(m,n))(Nm′

∑
n′

TC(m
′, n′)) =

∑
m 6=m′

NmNm′

=
∑
m

Nm

∑
m6=m′

Nm′

 =
∑
m

[
Nm(

∑
m

Nm −Nm)

] (8)

∑
m=m′

NmNm′TC(m,n)TC(m
′, n′)

=
∑

m=m′

(Nm

∑
n

TC(m,n))(Nm′

∑
n′

TC(m
′, n′)) =

∑
m=m′

NmNm′

=
∑
m

(Nm)2

(9)

∑
m=m′,n=n′

NmNm′TC(m,n)TC(m
′, n′)

=
∑
m,n

[NmTC(m,n)]
2
=

∑
m

(Nm)2
∑
n

[TC(m,n)]
2
=

∑
m

(Nm)2 ‖TC‖22

(10)∑
m 6=m′,n=n′

NmNm′TC(m,n)TC(m
′, n)

=
∑

m 6=m′

(Nm

∑
n

TC(m,n))(Nm′

∑
n

TC(m
′, n))

=
∑
m

[
Nm

∑
n

TC(m,n)

]2

−
∑
m

(Nm)2 ‖TC‖22

(11)

Substituting the derived equations above to Eq. (4-5), we have proved the The-
orem .
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5.2 Implementation of Class-Affinity Consistency Regularization

Given class-level noise transition matrix (Tc), affinity-level noise transition ma-
trix (Ta), and class distribution (N), the proposed class-affinity consistency
regularization can be derived through the code shown in Listing 1.1, and the
completed code will be published online. Since the true class distribution is not
available due to the noisy labels, we leverage the class distribution of pseudo
labels generated from the warm-up model as an approximation.

1 import torch
2

3 def CACR_loss(Tc , Ta , N):
4 v00 = v01 = v10 = v11 = 0
5 num_classes = Tc.shape [0]
6 for m1 in range(num_classes):
7 for n1 in range(num_classes):
8 a = t[m1][n1]
9

10 for m2 in range(num_classes):
11 for n2 in range(num_classes):
12 b = t[m2][n2]
13

14 if m1 == m2 and n1 == n2:
15 v11 += a * b * N[m1] * N[m2]
16 if m1 == m2 and n1 != n2:
17 v10 += a * b * N[m1] * N[m2]
18 if m1 != m2 and n1 == n2:
19 v01 += a * b * N[m1] * N[m2]
20 if m1 != m2 and n1 != n2:
21 v00 += a * b * N[m1] * N[m2]
22

23 Tc_a = torch.zeros ([2, 2]).cuda()
24 Tc_a [0][0] = v11 / (v11 + v10)
25 Tc_a [0][1] = v10 / (v11 + v10)
26 Tc_a [1][0] = v01 / (v01 + v00)
27 Tc_a [1][1] = v00 / (v01 + v00)
28 loss = torch.nn.MSELoss(reduction=’mean’)(Tc_a , Ta)
29 return loss

Listing 1.1. Implementation of class-affinity consistency regularization.

5.3 Visualization Results

We provide more surgical instrument segmentation results under four label noises,
including ellipse (Fig. 6), symmetric (Fig. 7), asymmetric (Fig. 8) and SFDA
(Fig. 9) noises. The qualitative comparison results demonstrate the superiority
of the proposed JCAS framework in learning precise semantic correlations.
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Test image RAUNet [12] LWANet [11] CSS [13] MTCL [18] SR [22] VolMin [10] Ours (JCAS) Ground truth

El
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se

Fig. 6. Illustration of dataset with ellipse label noises.

Test image RAUNet [12] LWANet [11] CSS [13] MTCL [18] SR [22] VolMin [10] Ours (JCAS) Ground truth
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Fig. 7. Illustration of dataset with symmetric label noises.

Test image RAUNet [12] LWANet [11] CSS [13] MTCL [18] SR [22] VolMin [10] Ours (JCAS) Ground truth
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Fig. 8. Illustration of dataset with asymmetric label noises.
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Test image RAUNet [12] LWANet [11] CSS [13] MTCL [18] SR [22] VolMin [10] Ours (JCAS) Ground truth

SF
D
A

seq_15_frame013

seq_9_frame103

Fig. 9. Illustration of dataset with SFDA label noises.
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