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Abstract. The reliability of segmentation models in the medical domain
depends on the model’s robustness to perturbations in the input space.
Robustness is a particular challenge in medical imaging exhibiting var-
ious sources of image noise, corruptions, and domain shifts. Obtaining
robustness is often attempted via simulating heterogeneous environments,
either heuristically in the form of data augmentation or by learning to
generate specific perturbations in an adversarial manner. We propose
and justify that learning a discrete representation in a low dimensional
embedding space improves robustness of a segmentation model. This
is achieved with a dictionary learning method called vector quantisa-
tion. We use a set of experiments designed to analyse robustness in
both the latent and output space under domain shift and noise pertur-
bations in the input space. We adapt the popular UNet architecture,
inserting a quantisation block in the bottleneck. We demonstrate im-
proved segmentation accuracy and better robustness on three segmenta-
tion tasks. Code is available at https://github.com/AinkaranSanthi/

Vector-Quantisation-for-Robust-Segmentation

Keywords: Robustness · Vector Quantisation · Semantic Segmentation.

1 Introduction

Segmentation of medical images is important in both aiding diagnosis and
treatment planning [10]. Deep learning, based on convolutional neural networks
(CNNs), has significantly improved segmentation performance and is now the
most widely used approach for automated segmentation [10]. However, it is well
established in the literature that these models are not significantly robust to
perturbations in the input whether that be noise or a domain shift [2,11]. This is
particularly relevant in the medical domain whereby images are acquired from
many sources with varying protocols and hence different image characteristics
[3]. There have been various methods developed in the literature to increase
robustness of the model most of which are based on simulating perturbations in
the input space during training [21]. For example, one can achieve this heuristically
through various data augmentation strategies of the training data. One can also
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train a model to learn to generate data to have an adversarial effect on the
performance of a model [18,12].

The vector quantised variational auto-encoder (VQ-VAE) was proposed as a
generative model which learns a discrete representation in the latent space via a
method called vector quantisation [19]. This is claimed to circumvent the issue
of posterior collapse in the VAE [19]. This model has been especially exploited
in the field of image generation including text-to-image [5,6,4,14].

We note that current methods have not explored how to improve the design of a
segmentation model so that it is inherently more robust to input perturbations[3].
We take inspiration from the VQ-VAE and hypothesise that deep segmentation
models are more robust and accurate when mapping the input data to a discrete
latent space.

1.1 Contribution

We propose quantisation of the latent space of any segmentation network ar-
chitecture, mapping the input images to a lower dimensional embedding space
increasing robustness to perturbation in the input space. We provide a thorough
justification for this claim under a set of laid out assumptions. We then derive an
empirically driven upper bound for maximum allowed shift in the latent space
due to perturbation for robustness to hold. We finally support our claim by
demonstrating through a set experiments how robustness and performance of
the popular UNet architecture [15] is improved with a quantised latent space.
Our experiments look at two forms of perturbations to highlight our claim in
the form of domain shift and noise. We focus on anatomical segmentation which
benefits most from a quantised latent space, because the spatial variability of
human anatomy is structured and quantisation in the bottleneck aims to help to
capture this by constraining the space where the features can reside.

2 Methods

2.1 Robustness and Network Assumptions

Given an input x, we first define a function f(x) to represent the transformed
input due to perturbation. This is a generic function in order to account for
various types of perturbations ranging from a re-normalisation function to a non-
linear mapping. We therefore now denote the perturbation to be δ(x) = f(x)− x
which can represent noise or domain shift. The aim in this work is to find a way
to learn a model (Φ) with weights w to be robust against δ(x) and construct an
uncorrupted segmentation y from the perturbed input f(x).

Assumption 1. Assuming a small value for δ(x), we can then approximate
Φ(x+ δ(x)) with a first order Taylor expansion as follows: Φ(x+ δ(x)) = Φ(x) +
δ(x)T∇xΦ. Therefore, the training framework should optimize for argminw[Φ(x+
δ(x))− Φ(x)] to be robust.
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Assumption 2. In this work we assume that the segmentation network can be
decomposed into an encoder (Φe) and decoder (Φd) such that Φ = Φd ◦ Φe, where
Φe : X → E maps from image space to a lower dimensional embedding space and
Φd : E → Y maps the embedding space back to segmentation space.

2.2 Quantisation for Robustness

Formally, with the quantisation block our segmentation network Φ now decom-
poses as Φd ◦ Φq ◦ Φe, where Φe, Φd, Φq corresponds to the encoder, decoder, and
quantisation blocks. Φq maps the embedding vectors (e) from the continuous
embedding space output of Φe(x) to quantised vectors (zq). The goal of the
quantisation block is to remove unnecessary information in the latent space by
collapsing a continuous latent space to a set of discrete vectors.

The quantisation process initially requires us to define a codebook (c ∈ RK×D.
K is the size of the codebook and D is the dimensionality of each codebook
vector li ∈ RD. We then define a discrete uniform prior and learn a categorical
distribution P(z | x) with one-hot probabilities determined by the mapping of
each embedding vector in e to the nearest codebook vector lk which form zq as
follows [19]:

P(z = k | x) =

{
1, for k = argmini||Φe(x)− li||2
0, otherwise

(1)

Backpropagation through the non-differentiable quantisation block requires
straight-through gradient approximation whereby one copies the gradients from
zq to the encoder output (e) which is used to update the codebook. This allows
the entire model to be trained end-to-end with the following loss function[19]:

Ltotal = LDice(ŷ, y) + LCE(ŷ, y) + ‖sg(Φe(x))− l‖2 + β‖Φe(x)− sg(l)‖2 (2)

The first two terms in equation 2 correspond to the Dice and cross entropy loss
between the predicted segmentation (ŷ) and label (y). The third term updates the
codebook by moving the codebook vectors (li) towards the output of the encoder.
The fourth term in equation 2 is defined as a commitment loss weighted by β
[19] . A stop gradient (sg) is applied to constrain the update to the appropriate
operand.

Based on assumption 1, we get, Φq(Φe(x+δ(x))) = Φq(Φe(x)+δ(x)T∇xΦe(x)).
We claim, quantisation pushes δ(x)T∇wΦe(x) to 0 and thereby enforces

Φq(Φe(x+ δ(x))) = Φq(Φe(x)). This claim holds true, if we make the following
assumption:

Assumption 3. We assume if ‖Φe(x)− li‖2 > 0; then x is absolutely perturbed
by δ(x). This means a codebook c with dimensionality D contains the minimal
number of codebook vectors K to fully capture all possible semantics in the latent
space i.e., complete. We also assume c is uniformly distributed on the surface of
a D-dimensional hypersphere. Therefore, the space on the hypersphere which lie
between c represents only perturbations of c. We denote the entire surface of the
hypersphere as Z and Φe(x) only generates e which only lies on Z.
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Finally, if the decoder (Φd) is only a function of the quantised representation
(zq) then given our assumption 3, Φ(x+δ(x)) = Φ(x). However, if Φd is a function
of z and output of each scale from the encoder (s) like in the UNet, then the effect
on the output of the model by δ(x) is only reduced. Yet, this maybe beneficial in
practise where the codebook is not complete.

2.3 Perturbation Bounds

A codebook has the advantage to allow us to derive a limit for the shift in latent
space which represents the boundary between perturbation and a true semantic
shift for the data distribution which we sample, given assumption 3. This can be
defined as the maximum perturbation allowed around a single codebook vector
denoted r and calculated empirically as half the average distance between a
codebook vector (li) and its nearest neighbour (li+1) across the whole of c as
follows:

r =

∑i=K−1
i=0

1
2 (‖li − li+1‖2)

K − 1
(3)

Uniformity also allows to state no matter what the shift along the surface of
Z, one will always be at least a distance r from the closest codebook vector lk.

Next, for simplicity observe a single vector from the output of Φe(x) and
Φe(x+ δ(x)) denoted ej and ej +∆. We can combine equation 3 and the first
order Taylor expansion of Φe(x+ δ(x)) to theoretically express r in terms of δ(x)
as follows:

r > ‖δ(x)T∇xej‖2 (4)

Therefore to affect an output of the quantisation block Φq, a perturbation
δ(x) should lead to a change in the embedding space (e) greater than r whose
upper bound expressed in terms of δ(x) is derived in equation 4.

2.4 Implementation Details and Data

Architecture: We consider the UNet as our benchmark segmentation architec-
ture and for the proposed architecture, VQ-UNet, we add a vector quantisation
block at the bottleneck layer of the baseline UNet. Our codebook size (K) is
1024 each of dimension (D) 256. We consider both 2D and 3D UNets. In the
encoder we double the number of feature channels from 32 and 16 at the first
level to 512 and 256 at the bottleneck, respectively for 2D and 3D. Each scale of
the encoder and decoder consist of a single pre-activation residual block [7], with
group normalisation ([22]) and Swish activation ([13]).

Training: We fine-tuned the hyper-parameter β in the loss function equation 3
to be 0.25. The loss function for training the UNet is the sum of the first two
terms of equation 2 (Dice/cross entropy). We train with batch-size of 10 and 2
for the 2D and 3D tasks, respectively. We apply the same spatial augmentation
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strategy for all models, and use Adam optimisation with a base learning rate of
0.0001 and weight decay of 0.05[8]. We train all models for a maximum of 500
epochs on three NVIDIA RTX 2080 GPUs.

Datasets: We use the following three datasets for our experimental study:
Abdomen: We use the Beyond the Cranial Vault (BTCV) consisting of 30 CT

scans with 13 labels acquired from a single domain (Vanderbilt University Medical
Center) [9]. All images were normalised to 0-1 and resampled to 1.5×1.5×2mm.
We randomly crop 96×96×96 patches for training.

Prostate: The prostate dataset originates from the NCI-ISBI13 Challenge
[1]. It consists of 60 T2 weighted MRI scans of which half come from Boston
Medical Centre (BMC) acquired on a 1.5T scanner with an endorectal coil and
the other half is acquired from Radboud University Nijmegen Medical Centre
(RUNMC) on a 3T scanner with a surface coil [1]. All images were re-sampled to
0.5×0.5×1.5mm and z-score normalized. We centre crop to 192×192×64.

Chest-X-ray: We use the NIH Chest X-ray dataset [20] with annotations
provided by [17] and the Japanese Society of Radiological Technology (JSRT)
dataset [16] for domain shift analysis; there are 100 and 154 annotated images,
respectively. Images were resized to 512×512 pixels and normalised to 0-1.

3 Experiments

3.1 Codebook Study

We first analyse whether assumption 3 holds by calculating r based on equation
3 and its standard deviation. We note there is a very large standard deviation
around r ranging from 0.0011 to 0.0021 for all 5 datasets (Table 2). This suggests
the 5 codebooks are not uniformly distributed i.e., incomplete. Hence, we cannot
reliably assume that a shift in latent space greater than r represents the boundary
between a meaningful semantic shift and perturbation. Therefore, r is obsolete,
and we can only denote ri; the distance for each codebook vector (li) to its nearest
neighbour. ri allows us to at least represent the maximally allowed perturbation
in the latent space for each learnt codebook vector.

Table 1: Mean r ± 1 standard deviation for all 5 datasets

.
NIH JRST Abdomen BMC RUNMC

0.001 ± 0.011 0.002 ± 0.014 0.011 ± 0.018 0.015 ± 0.021 0.012 ± 0.019

3.2 Domain Shift Study

We tackle domain shift from the angle of model design through incorporation of a
vector quantisation block in the UNet bottleneck. We evaluate how segmentation
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Table 2: Mean Dice and HD95 on the validation sets for a single domain and test
set across domain. The arrow represents the domain shift

.

Chest X-ray

JRST NIH JRST→NIH NIH→JRST
Dice HD95 Dice HD95 Dice HD95 Dice HD95

UNet 0.93 7.31 0.96 6.80 0.95 7.12 0.82 8.27

VQ-UNet 0.94 7.21 0.970 6.01 0.96 6.51 0.85 7.79

Prostate

BMC RUNMC BMC→RUNMC RUNMC→BMC
Dice HD95 Dice HD95 Dice HD95 Dice HD95

UNet 0.80 8.42 0.824 7.84 0.55 33.3 0.62 25.7

VQ-UNet 0.82 7.82 0.822 7.11 0.59 31.5 0.71 21.4

performance of the VQ-UNet differs from the UNet on a single domain and across
domain for the chest X-ray and prostate datasets on two evaluation metrics: :
Dice score and 95% Hausdorff distance in mm (HD95). We randomly split a
single domain in the prostate dataset into 24 for training and 6 for validation
and use the best trained model based on the Dice score for testing on the second
domain (30). For the NIH and JRST chest X-ray datasets, we randomly select
20 and 30 samples respectively for validation to find the best model to test on
the second domain.

BMC RUNMC RUNMC BMC

JRST NIH

Image UNet VQ-UNet Image Label UNet VQ-UNet

JRSTNIH

Label

Fig. 1: Sampled image input and Segmentation output for 2 domain shifts in
chest X-ray (top row) and prostate (bottom row)

.

Overall, the VQ-UNet improved the segmentation performance both on the
validation set and test set from a different domain for both prostate and chest
X-ray (Table 2). We note the UNet Dice score reduces to 0.82 and 0.93 compared
to 0.85 from 0.94 for the VQ-UNet when shifting domain from JRST to NIH
(Table 2). For prostate, there is a significant domain shift and we note a significant
drop in Dice score and HD95 distances when testing on a different domain for
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both the UNet and VQ-UNet (Table 2). However, VQ-UNet appears to be
more robust to this domain shift. This is particularly noted when testing on
the BMC dataset after training the VQ-UNet on RUNMC (Table 2). The drop
in performance albeit improved compared the UNet, is due to an incomplete
codebook. It is highly likely the data from the test set maps to e which is a
distance greater than ri of the nearest codebook vector (lk). This suggest e is
a perturbed version of a discrete point on the hypersphere which is not in our
incomplete codebook. Nonetheless, in Fig 1 we note the smoother, anatomically
more plausible segmentation map of the VQ-UNet compared to the UNet.

3.3 Perturbation Study

We compare how much the latent space changes in both models with different
perturbations in the input space for three datasets (abdomen, NIH, BMC). There
are myriad of perturbations one can apply in the input space, so we choose
three different types of noise perturbations (Gaussian, salt and pepper, and
Poisson noise) under 5 noise levels ranging from 0% to 30% to justify our claim
of robustness.

To evaluate the effect of noise on the latent space of the trained models,
we sample 100 different noise vectors for each image at each noise level, and
observe the variance in the latent space on the validation set. Table 3 describes
the average variance of latent space features in both models across all noise levels
for each type of noise. It can seen that latent space features in VQ-UNet are
not significantly changed (close to 0 variance) under various types of noise. The
results are visualised in Fig. 2 whereby the latent space of the VQ-UNet does
not significantly change compared to the UNet under the addition of up to 30%
Gaussian noise in the NIH dataset. Therefore, given equation 4, noise levels of
up to 30% is leading to a shift in the latent space of the VQ-UNet less than ri.

Fig. 2: Variance heatmap of UNet(left) and VQ-UNet(right) latent space under 4
Gaussian noise levels for the NIH dataset. X-axis indicates a unique subset of
features from a latent space, Y-axis corresponds to 100 randomly sampled test
set images, and value at each location indicates the variance of a specific feature
for a given image across 100 test time augmentations with Gaussian noise.
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Table 3: Average latent space variance in both the models for all three datasets.
Abdominal CT Chest X-ray Prostate

Gauss.
Noise

S &P
Noise

Poisson
Noise

Gauss.
Noise

S &P
Noise

Poisson
Noise

Gauss.
Noise

S &P
Noise

Poisson
Noise

UNet 0.46 0.44 0.46 0.51 0.43 0.47 0.56 0.51 0.51

VQ-UNet 3e-4 5e-5 2e-4 2e-4 1e-4 3e-4 1e-4 6e-5 8e-5

In our analysis of the output space, table 4 indicates the effect of Gaussian
perturbation on Dice scores on the in-domain validation set. It demonstrates
the Dice scores are more stable in the VQ-UNet compared to the UNet for
all three datasets up to 30% noise. We highlight this result further in Figure
3 which demonstrates that the segmentation maps produced by the VQ-UNet
under the addition of 30% Gaussian noise do not change visually compared to
the UNet. We make similar findings for salt & pepper noise and Poisson noise
(see supplementary material).

 

Image UNet VQ-UNet UNet(30%)Image(30%) VQ-UNet(30%)

Fig. 3: Sampled Abdomen input image and Segmentation output for UNet and
VQ-UNet under 0% (1st 3 columns) and 30% (2nd 3 columns) for s&p noise

.

Overall, the perturbation experiments show that quantisation helps in miti-
gating the effect of noise perturbation on the latent space, thereby generating
non-corrupted segmentation maps. This is in contrast to the prostate domain
shift experiments whereby the domain shift generates a shift in the latent space

Table 4: Gaussian noise perturbation on all 3 datasets

.

Dice @0% Dice @1% Dice @10% Dice @20% Dice @30%

Chest X-ray NIH dataset

UNet 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03

VQ-UNet 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.02

Abdominal CT

UNet 0.77 ± 0.01 0.76 ± 0.02 0.77 ± 0.04 0.76 ± 0.04 0.75 ± 0.08

VQ-UNet 0.80 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.80 ± 0.02 0.79 ± 0.02

Prostate BMC dataset

UNet 0.80 ± 0.02 0.81 ± 0.02 0.80 ± 0.03 0.78 ± 0.03 0.77 ± 0.06

VQ-UNet 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.03 0.80 ± 0.04
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larger than ri for each codebook vector or maps to perturbations from discrete
points not present in the codebook.

4 Conclusion

We propose and justify that given a segmentation architecture which maps the
input space to a low dimensional embedding space, learning a discrete latent space
via quantisation improves robustness of the segmentation model. We highlight
quantisation to be especially useful in the task of anatomical segmentation where
the output space is structured and hence the codebook metaphorically behaves
like an atlas in latent space. This however also possibly limits quantisation in
highly variable segmentation tasks such as tumour segmentation.

For future work, other architectures under various other perturbations such
as adversarial perturbations will be explored. We also note the limitation of
having a uniform prior during training in this work and aim to further increase
robustness by jointly training a VQ model with an auto-regressive prior.
Acknowledgements. This work was supported and funded by Cancer Research
UK (CRUK) (C309/A28804) and UKRI centre for Doctoral Training in Safe and
Trusted AI (EP/S023356/1).
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Supplementary Material

Derivation of equation 4:

r =

∑i=K−1
i=0

1
2 (‖li − li+1‖2)

K − 1
:Equation 3

ei − (ei +∆) = δ(x)T∇xei :First order Taylor expansion of Φe(x+ δ(x))

‖ei − (ei +∆)‖2 = ‖δ(x)T∇xei‖2
∴ r > ‖δ(x)T∇xej‖2
x, δ(x) ∈ RN ei, ei + δ ∈ RD ∇xei ∈ RN×D
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Figures and Tables

DecoderEncoder
Embedding vector(e)

e1

e2

eN

l1 l2 l3 lK

Quantized vector(z)

zN

Sample by 
Nearest 
neighbour

Codebook(c)

z1

z2

Quantisation

Fig. 4: Proposed vector quantisation of the bottleneck of segmentation model.
Note, skip connections between the encoder and decoder are optional

.

Table 5: Salt and Pepper perturbation results on all 3 datasets.
Dice @0% Dice @1% Dice @10% Dice @20% Dice @30%

Chest X-ray NIH dataset

UNet 0.96 ± 0.02 0.95 ± 0.02 0.92 ± 0.05 0.89 ± 0.08 0.86 ± 0.08

VQ-UNet 0.97 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02

Abdominal CT

UNet 0.77 ± 0.04 0.77 ± 0.04 0.76 ± 0.03 0.74 ± 0.06 0.72 ± 0.06

VQ-UNet 0.80 ± 0.01 0.79 ± 0.01 0.78 ± 0.01 0.78 ± 0.02 0.78 ± 0.02

Prostate BMC dataset

UNet 0.80 ± 0.02 0.80 ± 0.02 0.76 ± 0.03 0.75 ± 0.04 0.70 ± 0.11

VQ-UNet 0.82 ± 0.01 0.82 ± 0.01 0.81 ± 0.02 0.82 ± 0.01 0.80 ± 0.02
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Table 6: Poisson noise perturbation results on all 3 datasets.
Dice @0% Dice @1% Dice @10% Dice @20% Dice @30%

Chest X-ray NIH dataset

UNet 0.96 ± 0.02 0.96 ± 0.02 0.94 ± 0.04 0.94 ± 0.04 0.92 ± 0.05

VQ-UNet 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.95 ± 0.02

Abdominal CT

UNet 0.77 ± 0.01 0.76 ± 0.02 0.76 ± 0.02 0.75 ± 0.02 0.75 ± 0.02

VQ-UNet 0.80 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.79 ± 0.02 0.78 ± 0.02

Prostate BMC dataset

UNet 0.80 ± 0.02 0.80 ± 0.02 0.81 ± 0.02 0.78 ± 0.04 0.77 ± 0.04

VQ-UNet 0.82 ± 0.01 0.81 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.80 ± 0.03

(a) NIH Chest X-ray sample

(b) BMC prostate sample

Fig. 5: Image and segmentation output for UNet and VQ-UNet under 0% (1st 3
columns) and 30% (2nd 3 columns) for s&p noisee

Table 7: Mean validation score for all 13 labels on the BTCV dataset
.

Dice

Spl Rki Lki Gal Eso Liv Sto Aor IVC Eso Vei Pan AG Avg

UNet 0.94 0.86 0.86 0.63 0.73 0.94 0.84 0.81 0.80 0.72 0.69 0.65 0.62 0.77

VQ-UNet 0.95 0.88 0.89 0.63 0.76 0.95 0.84 0.84 0.79 0.73 0.72 0.66 0.63 0.79

95% HD

UNet 2.67 2.98 2.95 9.67 4.91 2.80 3.31 5.12 8.19 6.16 8.10 7.82 7.01 5.51

VQ-UNet 2.69 2.78 2.43 9.81 4.12 2.42 3.15 4.29 7.56 6.20 7.39 6.52 5.18 4.96

ASD

UNet 0.61 0.61 0.62 1.04 0.98 0.57 0.66 1.56 1.47 0.87 1.12 0.60 0.61 0.87

VQ-UNet 0.56 0.59 0.58 0.98 0.87 0.57 0.63 1.48 1.33 0.85 1.03 0.53 0.61 0.82
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