Skip to main content

Bi-directional Encoding for Explicit Centerline Segmentation by Fully-Convolutional Networks

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Localization of tube-shaped objects is an important topic in medical imaging. Previously it was mainly addressed via dense segmentation that may produce inconsistent results for long and narrow objects. In our work, we propose a point-based approach for explicit centerline segmentation that can be learned by fully-convolutional networks. We propose a new bi-directional encoding scheme that does not require any autoregressive blocks and is robust to various shapes and orientations of lines, being adaptive to the number of points in their centerlines. We present extensive evaluation of our approach on synthetic and real data (chest x-ray and coronary angiography) and show its advantage over the state-of-the-art segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: Fully automatic and real-time catheter segmentation in x-ray fluoroscopy. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 577–585. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_65

    Chapter  Google Scholar 

  2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  3. Frid-Adar, M., Amer, R., Greenspan, H.: Endotracheal tube detection and segmentation in chest radiographs using synthetic data. In: Shen, D., Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 784–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_87

    Chapter  Google Scholar 

  4. Pan, L.S., Li, C.W., Su, S.F., Tay, S.Y., Tran, Q.V., Chan, W.P.: Coronary artery segmentation under class imbalance using a u-net based architecture on computed tomography angiography images. Sci. Rep. 11(1), 1–7 (2021)

    Article  Google Scholar 

  5. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 8530–8539 (2020). https://doi.org/10.1109/CVPR42600.2020.00856

  6. Pothineni, N.V., et al.: Coronary artery injury related to catheter ablation of cardiac arrhythmias: a systematic review. J. Cardiovasc. Electrophysiol. 30(1), 92–101 (2019)

    Article  Google Scholar 

  7. Sirazitdinov, I., Lenga, M., Baltruschat, I.M., Dylov, D.V., Saalbach, A.: Landmark constellation models for central venous catheter malposition detection. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1132–1136. IEEE (2021)

    Google Scholar 

  8. Sirazitdinov, I., Schulz, H., Saalbach, A., Renisch, S., Dylov, D.V.: Tubular shape aware data generation for segmentation in medical imaging. Int. J. Comput. Assist. Radiol. Surg., 1–9 (2022)

    Google Scholar 

  9. Subramanian, V., Wang, H., Wu, J.T., Wong, K.C.L., Sharma, A., Syeda-Mahmood, T.: Automated detection and type classification of central venous catheters in chest x-rays. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 522–530. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_58

    Chapter  Google Scholar 

  10. Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)

  11. Tang, J.S., et al.: Clip, catheter and line position dataset. Sci. Data 8(1), 1–7 (2021)

    Article  MathSciNet  Google Scholar 

  12. Wei, F., Sun, X., Li, H., Wang, J., Lin, S.: Point-set anchors for object detection, instance segmentation and pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 527–544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_31

    Chapter  Google Scholar 

  13. Wood, B.J., et al.: Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J. Vasc. Intervent. Radiol. 16(4), 493–505 (2005)

    Article  Google Scholar 

  14. Xie, E., et al.: PolarMask: Single shot instance segmentation with polar representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 12190–12199 (2020). https://doi.org/10.1109/CVPR42600.2020.01221

  15. Yi, X., Adams, S., Babyn, P., Elnajmi, A.: Automatic catheter and tube detection in pediatric x-ray images using a scale-recurrent network and synthetic data. J. Digital Imaging 33(1), 181–190 (2020)

    Article  Google Scholar 

  16. Yi, X., Adams, S.J., Henderson, R.D., Babyn, P.: Computer-aided assessment of catheters and tubes on radiographs: how good is artificial intelligence for assessment? Radiol. Artif. Intell. 2(1), e190082 (2020)

    Google Scholar 

  17. Zhou, Y.-J., et al.: Real-time guidewire segmentation and tracking in endovascular aneurysm repair. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 491–500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_40

    Chapter  Google Scholar 

  18. Zhou, Y.J., Xie, X.L., Hou, Z.G., Bian, G.B., Liu, S.Q., Zhou, X.H.: Frr-net: fast recurrent residual networks for real-time catheter segmentation and tracking in endovascular aneurysm repair. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 961–964. IEEE (2020)

    Google Scholar 

  19. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  20. Zolotarev, A.M., et al.: Optical mapping-validated machine learning improves atrial fibrillation driver detection by multi-electrode mapping. Circul. Arrhythmia Electrophysiol. 13(10), e008249 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Dylov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 349 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sirazitdinov, I., Saalbach, A., Schulz, H., Dylov, D.V. (2022). Bi-directional Encoding for Explicit Centerline Segmentation by Fully-Convolutional Networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics