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Abstract. There exists a large number of datasets for organ segmenta-
tion, which are partially annotated, and sequentially constructed. A typ-
ical dataset is constructed at a certain time by curating medical images
and annotating the organs of interest. In other words, new datasets with
annotations of new organ categories are built over time. To unleash the
potential behind these partially labeled, sequentially-constructed datasets,
we propose to learn a multi-organ segmentation model through incremen-
tal learning (IL). In each IL stage, we lose access to the previous anno-
tations, whose knowledge is assumingly captured by the current model,
and gain the access to a new dataset with annotations of new organ cat-
egories, from which we learn to update the organ segmentation model
to include the new organs. We give the first attempt to conjecture that
the different distribution is the key reason for ‘catastrophic forgetting’
that commonly exists in IL methods, and verify that IL has the natural
adaptability to medical image scenarios. Extensive experiments on five
open-sourced datasets are conducted to prove the effectiveness of our
method and the conjecture mentioned above.

Keywords: Incremental learning · Partially labeled datasets · Multi-
organ segmentation.

1 Introduction

As the performance of deep learning has been verified in the field of computer
vision, a large number of supervised datasets have been open-sourced, which
greatly accelerating the development of deep learning technology. Unlike natu-
ral image datasets [3, 4, 12, 25] that are almost completely labeled for common
categories, constructing a high-quality medical image dataset requires profes-
sional knowledge of different anatomical structures, so full annotation is very
difficult to achieve in medical image scenarios, especially for segmentation tasks.
Multi-organ segmentation is a very important task in medical image analysis
scenes [26,27]. However, there exist now many partially labeled datasets [1,6,23]
that only with annotation of the organs of interest to the dataset builders. Fig. 1
gives some example images in partially labeled datasets.

There exists a ‘knowledge’ conflict from these partially labeled datasets, e.g.,
the liver is marked as foreground in Dataset 1 and background in Datasets 2-4, as
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Dataset 0: Organs Dataset 1: Liver Dataset 2: Spleen Dataset 3: Pancreas Dataset 4: L/R Kidney

Fig. 1. Five typical partially labeled CT images from five different datasets.

shown in Fig. 1. Such a conflict prevents the direct utilization of all these datasets
together, which limits their potential usefulness. So far, there has been some
emerging research [5,20,28] on how to mix them together, and the performance
of multi-organ segmentation was improved, proving that the unlabeled data in
partially labeled datasets is also helpful for learning. As clinical needs increase,
more categories and labeled datasets will be added, and current methods must
retrain all datasets every time. When the aggregate scale of the datasets is large,
there will be great pressure on storage and efficiency.

Incremental learning (IL) is a staged learning method, which learns new cat-
egories incrementally and loses access to the previous annotated images with
old categories, making it an ideal choice for dealing with the above-mentioned
storage and efficiency issues with better scalability in the future. And it can also
solve the ethical and moral issues of sharing medical data by sharing model pa-
rameters. The main challenge in IL is the so-called ‘catastrophic forgetting’ [15]:
how to keep the performance on old classes while learning new ones. IL has
been studied for object recognition [7,10,11,13,19] and detection [14,21,22], but
less in segmentation [2, 16, 18, 24]. In 2D medical image segmentation, Ozdemir
and Goksel [18] made some attempts using the IL methods in natural images
directly, with only two categories, and it mainly focuses on verifying the pos-
sibility of transferring the knowledge learned in the first category with more
images to a second category with less images. In MiB [2], Cermelli et al. solved
knowledge conflicts existing in other IL methods [11, 16] by remodeling old and
new categories into background in loss functions of learning new categories and
preserving old knowledge respectively, achieving a performance improvement.

However, catastrophic forgetting is still obvious even though a knowledge
distillation loss is used commonly for combatting it. We make a hypothesis that
the distillation loss can only be applied to the dataset at different stages un-
der the same distribution. Different distributions cause the old model to output
wrong responses to contents of unseen categories or seen categories that are quite
different in appearance, violating the implicit assumption for the distillation to
work. This is why ‘15-5’ setting and ‘Overlapped’ setting in MiB [2], whose dis-
tributions in different stages are closer, perform better than other comparison
settings.

Compared with nature images, we believe medical images are inherently
adaptable to IL due to the relatively fixed anatomical structures of the hu-
man body, e.g. liver is just close to right kidney, that old categories objects will
emerge in new categories learning stage. This feature can maintain the distribu-



Title Suppressed Due to Excessive Length 3

𝑓𝜃𝑡(∙) b       liver  spleen  

𝑞𝑖
𝑡−1 = 𝑓𝜃𝑡−1 (𝑥𝑖)

b      liver spleen  pancreas

𝑞𝑖
𝑡 = 𝑓𝜃𝑡 (𝑥𝑖)

Image 𝑥𝑡

with 𝑦𝑡

b      liver spleen  pancreas

b       liver spleen 

ℒ𝑠𝑒𝑔

ℒ𝑘𝑑Frozen

Trainable

𝑓𝜃𝑡−1(∙)

ො𝑞𝑖
𝑡(𝑞ු𝑖

𝑡)

෤𝑞𝑖
𝑡

Eq.1(5)

Eq.2

ℒ𝐶𝑂𝑅𝑅

Fig. 2. Overview of the tth stage of IL in multi-organ segmentation.

tion consistency of the datasets in different stages to a large extent. Then there
raises an interesting question: will the IL perform better on the medical image
segmentation tasks?

In this work, we present a novel study on incremental learning models for
multi-organ segmentation task with four stages to aggregate five partially labeled
datasets in medical image scene. Our main contributions can be summarized as:

– We give the first attempt to perform IL on multi-organ segmentation task,
and firstly verify the effectiveness on multiple partially annotated datasets.

– Our extensive experiments on five open-sourced datasets help to prove our
hypothesis that different distributions in different stages is the key reason
for catastrophic forgetting in current IL settings.

2 Methodology

2.1 Problem Definition

The overview of tth stage of IL in our method is shown in Fig. 2. Given an input
image xt ∈ X t, which is composed by a set of voxels I, we firstly process it by the
model in current stage, fθt(·) with trainable parameters θt, getting the output
qt = fθt(x

t). For the learning of new categories (Ct) in current stage, a one-hot
vector yt is the ground truth for Ct in x. Label space Yt is expanded from Yt−1
with Ct, Yt = Yt−1 ∪Ct = C0 ∪C1 ∪ ...∪Ct. Note that the annotations of the old
categories Yt−1 will be inaccessible in the new stage under ideal IL settings. For
preserving the knowledge of old categories, we process x by old model fθt−1

(·)
with frozen parameters θt−1 and get qt−1 = fθt−1

(xt) for reference. Trainable
θt in tth stage is expand with Θt, θt = θt−1 ∪ Θt. We initialize Θt the same as
MiB [2].

2.2 Background Remodeling

While the relatively fixed anatomical structure of human body in medical image
brings help for IL, it also makes the ‘knowledge’ conflict more obvious. For
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example, in Fig. 2, the label of voxel i on spleen is background in ground truth
yt of tth stage. If we directly calculate the loss based on qt and yt, it will punish
the correct response on spleen channel, and the same for other channels. Different
from [18] based on Learning without Forgetting [11] using qt directly, we remodel
the background (b) channel of qt based on MiB [2] by moving probabilities of
new classes or old classes to background class, getting q̂t and q̃t for the following
calculation of the loss functions. Their definition is shown in Eq. 1 and Eq. 2,
respectively.

q̂ti,c =

{
exp(qti,b +

∑
c∈Ct q

t
i,c)/

∑
c∈Yt exp(qti,c) if c = b

exp(qti,c)/
∑
c∈Yt exp(qti,c) if c ∈ yt−1&c 6= b

(1)

q̃ti,c =


exp(

∑
c∈Yt−1 qti,c)/

∑
c∈Yt exp(qti,c) if c = b

0 if c ∈ yt−1&c 6= b
exp(qti,c)/

∑
c∈Yt exp(qti,c) if c ∈ Ct

(2)

2.3 Loss Functions

In the IL setting, the whole loss function L is composed by Lseg for learning new
knowledge of new categories and Lkd for preserving old knowledge distilled from
the previous model, fθt−1

. For Lseg, the cross-entropy loss is the most commonly
used. We also invoke Dice loss [17] into Lseg, which is verified useful in medical
image segmentation.

L = Lseg(q̃t, yt) + Lkd(q̂t, σ(qt−1))

= LCE(q̃t, yt) + LDice(q̃t, yt) + Lkd(q̂t, σ(qt−1))
(3)

Where σ is the softmax operation.

CORR Loss We also devise a new corrective (CORR) loss to reduce the low
confident knowledge and remove some false positive predictions, maybe caused
by distribution disturbance between different datasets. CORR loss weakens voxel
i with low confident response and enhances the influence of voxel i with high
confident response, which is implemented by W defined in Eq. 4, where C is
the target category in voxel i, T HR is the threshold of confidence and n is
the scale exponent. We set T HR and n to 0.95 and 12 empirically. yt−1pseu =
onehot(argmaxc∈Yt−1qt−1c ).

Wi,c =

{(
T HR

σ(qt−1)i,c
· yt−1pseui,c

)n
if c = C

1 if c 6= C
(4)

Then CORR loss can be calculated as shown in Eq. 6.

q̌ti,c =

{
qti,b +

∑
c∈Ct q

t
i,c if c = b

qti,c if c ∈ yt−1&c 6= b
(5)
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Fig. 3. Diagram of LCORR(qt, qt−1). (a) When the confidence of the pseudo GT out
of model in stagei−1 is low, w will reduce this voxel’s contribution to the CORR loss.
(b) Contrary to (a) when the confidence is high.

LCORR(qt, qt−1)=LCE(q̌t ·W, yt−1pseu)=− 1

|I|
∑
i∈I

∑
c∈Yt

yt−1pseui,c
log
(
σ(q̌ti,c ∗Wi,c)

)
(6)

The diagrams of CORR loss is shown in Fig. 3. In (a), When the voxel i is
with a low confident response from fθt−1

, i.e. qt−1i,C < T HR, qti,C will be enlarged
Wi,C times, where C is the channel of ‘Spleen’ here. The lower confidence, the
higher probability in corresponding channel and the lower contribution to loss
function. Vice versa at voxels with high confidence as shown in (b). So the whole
loss function in our method is shown as below, and ω1, ω2 and ω3 are set to 1,
10, 1 based on [2].

L = ω1 · Lseg + ω2 · Lkd + ω3 · LCORR (7)

3 Experiments

3.1 Implementation Details

Datasets and Preprocessing We choose five organs in our experiments, in-
cluding liver, spleen, pancreas, right kidney and left kidney, and use five CT
datasets as shown in Table 1. We process all datasets to a unified spacing (1.7,
0.79, 0.79) and normalize them with mean and std of 90.9 and 65.5 respec-
tively. We split five datasets to 5 folds and select one fold, randomly, to evaluate
our method. For our IL setting, five organs are collected in four stages, liver
(F+P1)→spleen (F+P2)→pancreas (F+P3)→R/L kidney (F+P4). The annota-
tions of different organs in dataset F are used separately in our IL setting.
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Table 1. A summary of five benchmark datasets used in our experiments. [13] means
13 organs are in original dataset. We ignore other eight organs in our experiments. [T]
means there are tumor labels in original dataset and we merge them into corresponding
organs.

Datasets Modality # of labeled volumes Annotated organs Mean spacing (z, y, x) Source

Dataset0 (F) CT 30 Five organs [13] (3.0, 0.76, 0.76) Abdomen in [1]
Dataset1 (P1) CT 131 Liver [T] (1.0, 0.77, 0.77) Task03 in [23]
Dataset2 (P2) CT 41 Spleen (1.6, 0.79, 0.79) Task09 in [23]
Dataset3 (P3) CT 281 Pancreas [T] (2.5, 0.80, 0.80) Task07 in [23]
Dataset4 (P4) CT 210 L&R Kidneys [T] (0.8, 0.78, 0.78) KiTS [6]

All CT 693 Five organs (1.7, 0.79, 0.79) -

Table 2. In the last stage, the 95th percentile Hausdorff distance (HD95) of the seg-
mentation results of different methods on different datasets. The best result is shown
in bold.

Methods\Organs Liver∈F Liver∈P1 Spleen∈F Spleen∈P2 Pancreas∈F Pancreas∈P3 R Kidney∈F R Kidney∈P4 L Kidney∈F L Kidney∈P4 Mean

φF+P1 (Liver) 2.39± 0.66 10.81± 25.54 - - - - - - - - -
φF+P2 (Spleen) - - 1.58± 0.41 24.74± 62.02 - - - - - - -
φF+P3 (Pancreas) - - - - 23.23± 33.60 6.45± 10.02 - - - - -
φF+P4 (R/L Kidney) - - - - - - 26.49± 54.34 15.15± 43.06 30.13± 61.08 6.67± 16.59 14.76

φF (Five organs) 1.58± 0.41 12.12± 17.81 1.00± 0.00 1.35± 0.41 5.39± 3.82 9.41± 8.98 1.36± 0.40 6.19± 4.25 2.27± 1.87 11.67± 16.45 5.23

FT nan nan nan nan nan nan 4.85± 2.33 8.16± 31.29 3.97± 1.66 3.01±.6.71 -
LwF [11] 2.33± 0.48 11.19± 24.66 46.11± 96.71 30.31± 76.26 .4.89± 3.04 9.33± 13.54 16.03± 23.95 35.90± 57.56 25.68± 22.29 49.63± 54.46 23.14
ILT [16] 2.36± 0.53 11.13± 25.34 66.61± 102.64 30.59± 76.31 16.02± 19.58 10.37± 15.08 4.63± 2.21 29.34± 56.31 4.31± 1.21 21.80± 36.70 19.72
MiB [2] 2.56± 0.76 11.52± 25.03 1.48±0.37 29.04±72.38 3.59±1.35 6.76± 9.71 4.87± 2.47 .8.09±30.75 3.63± 1.35 10.29± 28.95 8.19
MiBOrgan(MiB+CORR) 2.19±0.72 11.06±24.24 1.96± 0.99 30.11± 75.21 3.97± 2.14 6.13±6.04 4.44±2.24 8.58± 33.12 3.04±0.91 5.21± 12.16 7.45

MargExc MIA [20] 2.84± 1.53 4.04± 2.64 17.58± 7.27 1.00± 0.09 3.24± 0.69 3.96± 3.27 1.43± 0.14 1.28± 0.07 3.13± 0.58 1.68± 0.68 4.02

Code We implement our method based on open source code of 3D fullres version
nnU-Net1 [9]. We also used MONAI2 and MiB3 during our algorithm develop-
ment. Considering limiting the GPU memory consumption within 12Gb, our
patch-size and batch-size are (80, 160, 128) and 2 in our experiments. We train
the network with the same optimizer and learning rate policy as nnU-Net for
about 400 epochs. The initial learning rate of the first stage and followed stages
are set to 3e-4 and 15e-5.

Baselines To verify the effect of IL approach in the collection of multiple par-
tially annotated datasets, we first construct experiments on each organ sepa-
rately (F+Pi). Dataset F has five organs meanwhile, we also do a five-class
segmentation experiment on F directly (F). To handle the datasets constructed
sequentially, simple fine-tuning (FT) is the most intuitive. And we compare our
proposed method with some state-of-the-art (SOTA) methods, LwF [11], ILT [16]
and MiB [2]. For the results please refer to Sect. 3.2.

3.2 Results and Discussions

We use Dice coefficient (DC) and 95th percentile Hausdorff distance (HD95) for
comparing different methods.The results are shown in Table 3 and Table 2.

1 github.com/mic-dkfz/nnunet
2 https://monai.io/
3 https://github.com/fcdl94/MiB

github.com/mic-dkfz/nnunet
https://monai.io/
https://github.com/fcdl94/MiB
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Table 3. In the last stage, the Dice coefficient (DC) of the segmentation results of
different methods on different datasets. The best result is shown in bold.

Methods\Organs Liver∈F Liver∈P1 Spleen∈F Spleen∈P2 Pancreas∈F Pancreas∈P3 R Kidney∈F R Kidney∈P4 L Kidney∈F L Kidney∈P4 Mean

φF+P1 (Liver) .958± .017 .964± .030 - - - - - - - - -
φF+P2 (Spleen) - - .951± .010 .955± .028 - - - - - - -
φF+P3 (Pancreas) - - - - .809± .053 .850± .071 - - - - -
φF+P4 (R/L Kidney) - - - - - - .917± .038 .970± .027 .913± .031 .963± .042 .925

φF (Five organs) .967± .010 .948± .027 .969± .007 .955± .005 .786± .091 .704± .149 .949± .016 .884± .093 .926± .057 .825± .172 .891

FT .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .917± .016 .978±.011 .919± .015 .973±.021 .379
LwF [11] .959± .017 .961± .032 .940± .021 .956± .024 .804± .044 .807± .102 .912± .016 .944± .043 .879± .044 .900± .104 .906
ILT [16] .958± .017 .962± .029 .937± .020 .949± .035 .795± .046 .807± .096 .913± .022 .955± .039 .912± .017 .919± .103 .911
MiB [2] .961±.017 .959± .037 .953±.015 .953±.033 .817±.048 .819±.111 .918±.018 .972± .035 .920± .016 .952± .073 .922
MiBOrgan(MiB+CORR) .961±.017 .960±.034 .950± .016 .950± .035 .809± .049 .814± .111 .917± .018 .971± .028 .921±.019 .953± .077 .921

MargExc MIA [20] .969± .012 .957± .009 .924± .009 .970± .008 .836± .006 .808± .041 .946± .012 .952± .013 .978± .013 .972± .004 .931

Table 4. The Dice coefficient (DC) and 95th percentile Hausdorff distance (HD95) of
the segmentation results in different stages. The best result is shown in bold. ‘-’ means
Not Applicable.

DC HD
Setting Organs\Stages S0 S1 S2 S3 S0 S1 S2 S3

FT Liver .963±.028 .000± .000 .000± .000 .000± .000 9.23±23.26 nan nan nan
Spleen - .961±.013 .000± .000 .000± .000 - 1.35±0.34 nan nan
Pancreas - - .844±.091 .000± .000 - - 5.00±6.82 nan
L Kidney - - - .970±.024 - - - 7.74±29.26
R Kidney - - - .966±.027 - - - 3.13±6.30

LwF Liver .963±.028 .962±.028 .962±.028 .961±.030 9.23±23.26 9.43± 23.20 9.36±22.80 9.53± 22.50
Spleen - .948± .024 .948± .024 .949± .024 - 40.02± 85.27 44.40± 86.85 37.08± 85.98
Pancreas - - .806± .094 .807± .098 - - 15.59± 32.45 8.90± 12.97
L Kidney - - - .940± .042 - - - 33.36± 54.84
R Kidney - - - .897± .098 - - - 46.57± 52.10

MiBOrgan Liver .963±.028 .961± .032 .961± .031 .961±.032 9.23±23.26 9.29±22.36 14.70± 36.24 9.40±22.12
(MiB+CORR) Spleen - .949± .026 .950±.025 .950±.029 - 43.13± 84.72 36.09±83.96 18.05±58.54

Pancreas - - .819± .100 .814±.107 - - 8.80±14.28 5.92±5.82
L Kidney - - - .964± .033 - - - 8.05± 30.97
R Kidney - - - .949± .073 - - - 4.94± 11.38

Annotations used separately: When we do not aggregate these partially
labeled data together by IL, there are some limitations in the results. Five-
class segmentation model φF trained on ‘fully’ annotated dataset F, has a good
performance on itself, but can not generalize well to other datasets due to the
scale of the dataset F. And we train four models, φF+P∗ , one model per organ
segmentation task trained on corresponding datasets (F+P∗), then all datasets
can be used. We can get the best performance on DC metric, but worse on
HD95 metric. And this method is also poor in scalability and efficiency when
the categories grow in the future.

Aggregating partially labeled datasets: When we aggregate these partially
labeled datasets together, the most intuitive method FT is the worst. It has no
preservation about the old knowledge because there is no restraint for it. LwF
and ILT perform better than model φF , because they learn on much more data
than dataset F, 554 vs 24. But wrong supervision limits the performance of LwF
and ILT on these datasets, due to ‘knowledge’ conflict.

After we remodel the background of the predictions out of fθt , MiB gets a
large improvement on the performance of DC and HD all (MiB vs Lwf/ILT), ob-



8 Pengbo Liu et al.

taining a comparable performance on DC and an obvious improvement on HD95
compared to models trained separately. Solving ‘knowledge’ conflict between dif-
ferent partially annotated datasets, not only the preservation of the performance
on the old categories but also the learning of the new categories has been im-
proved. Adding CORR loss, MiBOrgan gets an exchange of 0.1% drop on DC
for 9% enhancement on HD95. It shows that CORR loss removes some low con-
fident predictions and reduces false positive results, thereby reducing HD95 to
a certain extent.

Compared with partially supervised method: We also compare the result
with SOTA partially supervised method, MargExc MIA [20], which have access
to all partially labeled datasets and annotations in one time. The results are
taken from [20], which can be regarded as our upper-bound. The performance
of our method is close, but without accessing all the training data in one time.

Performance on different stages: In Table 4, we also show the performance
on old and new categories of models in different stages of three typical IL set-
tings, FT, LwF, and MiBOrgan. We can observe that FT can always get the best
results on the categories learned in current stage. Because FT only needs to focus
on learning fully supervised new categories with a good ‘pretrained’ base model,
which is trained in former stage. MiBOrgan and LwF can preserve old knowledge
and learn new knowledge meanwhile, due to the constraint from distillation loss.
The more difficult task also makes the learning of new categories not as good as
FT. MiBOrgan takes one step closer to the best through solving ‘knowledge’ con-
flict existing in LwF. And we found no obvious forgetting problem in our medical
image scene, which can help to prove our hypothesis — distribution consistency
in medical image helps retain knowledge of old categories. This implies that IL
is a suitable choice for medical image analysis.

4 Conclusion

To unleash the potential from a collection of partially labeled datasets in medical
image scenarios, we introduce incremental learning (IL) to aggregate them by
stages, which marks the first attempt in the literature to verify for a multi-organ
segmentation task the extent of the key issue associated with IL — different dis-
tributions between IL stages may mislead the direction of learning process. The
introduction of CORR loss also helps to reduce the false positive predictions by
removing predictions with low confidence. IL methods have natural adaptability
to medical image scenarios due to the relatively fixed anatomical structure of
human body, which is an inspiration to natural image scene that introducing an
external dataset containing old categories of objects under the similar distribu-
tion in the new stage will give the same effect. We believe it will be a valuable
research direction in the future. Further, we plan to explore a universal segmen-
tation model [8] based on IL method, containing organs from different regions,
which presents a new challenge for using IL in medical image segmentation.
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