Skip to main content

Harnessing Deep Bladder Tumor Segmentation with Logical Clinical Knowledge

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Segmentation of bladder tumors from Magnetic Resonance (MR) images is important for early detection and auxiliary diagnosis of bladder cancer. Deep Convolutional Neural Networks (DCNNs) have been widely used for bladder tumor segmentation but the DCNN-based tumor segmentation over-depends on data training and neglects the clinical knowledge. From a clinical point of view, a bladder tumor must rely on the bladder wall to survive and grow, and the domain prior is very helpful for bladder tumor localization. Aiming at the problem, we propose a novel bladder tumor segmentation method in which the clinical logic rules of bladder tumor and wall are incorporated into DCNNs and make the segmentation of DCNN harnessed by the clinical rules. The logic rules provide a semantic and friendly knowledge representation for human clinicians, which are easy to set and understand. Moreover, fusing the logic rules of clinical knowledge facilitates to reduce the data dependency of the segmentation network and achieve precise segmentation results even with limited labeled training images. Experiments on the bladder MR images from the cooperative hospital validate the effectiveness of the proposed tumor segmentation method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cha, K.H., et al.: Computer-aided detection of bladder masses in CT urography (CTU). In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 1013403. International Society for Optics and Photonics (2017)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Dash, T., Srinivasan, A., Vig, L.: Incorporating symbolic domain knowledge into graph neural networks. Mach. Learn. 110(7), 1609–1636 (2021). https://doi.org/10.1007/s10994-021-05966-z

    Article  MathSciNet  Google Scholar 

  5. Dolz, J., et al.: Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 45(12), 5482–5493 (2018)

    Article  Google Scholar 

  6. Fan, T., Wang, G., Li, Y., Wang, H.: Ma-net: a multi-scale attention network for liver and tumor segmentation. IEEE Access 8, 179656–179665 (2020)

    Article  Google Scholar 

  7. Garapati, S.S., et al.: Urinary bladder cancer staging in CT urography using machine learning. Med. Phys. 44(11), 5814–5823 (2017)

    Article  Google Scholar 

  8. Ge, R., et al.: Md-unet: Multi-input dilated u-shape neural network for segmentation of bladder cancer. Comput. Biol. Chem. 93, 107510 (2021)

    Article  Google Scholar 

  9. Gosnell, M.E., Polikarpov, D.M., Goldys, E.M., Zvyagin, A.V., Gillatt, D.A.: Computer-assisted cystoscopy diagnosis of bladder cancer. In: Urologic Oncology: Seminars and Original Investigations, vol. 36, pp. 8–e9. Elsevier (2018)

    Google Scholar 

  10. Huang, X., Yue, X., Xu, Z., Chen, Y.: Integrating general and specific priors into deep convolutional neural networks for bladder tumor segmentation. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  11. Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., Ayed, I.B.: Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 54, 88–99 (2019)

    Article  Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Li, R., Chen, H., Gong, G., Wang, L.: Bladder wall segmentation in MRI images via deep learning and anatomical constraints. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1629–1632. IEEE (2020)

    Google Scholar 

  14. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-denseunet: hybrid densely connected unet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  15. Ma, X., et al.: U-net based deep learning bladder segmentation in CT urography. Med. Phys. 46(4), 1752–1765 (2019)

    Article  Google Scholar 

  16. Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin lesion segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 737–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_84

    Chapter  Google Scholar 

  17. Oda, H., et al.: BESNet: boundary-enhanced segmentation of cells in histopathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 228–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_26

    Chapter  Google Scholar 

  18. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Shkolyar, E., Jia, X., Chang, T.C., Trivedi, D., Mach, K.E., Meng, M.Q.H., Xing, L., Liao, J.C.: Augmented bladder tumor detection using deep learning. Eur. Urol. 76(6), 714–718 (2019)

    Article  Google Scholar 

  21. Xie, Y., Xu, Z., Kankanhalli, M.S., Meel, K.S., Soh, H.: Embedding symbolic knowledge into deep networks. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  22. Yan, S., Tai, X.C., Liu, J., Huang, H.Y.: Convexity shape prior for level set-based image segmentation method. IEEE Trans. Image Process. 29, 7141–7152 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yue, Q., Luo, X., Ye, Q., Xu, L., Zhuang, X.: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_62

    Chapter  Google Scholar 

  24. Zhang, C., Yue, X., Chen, Y., Lv, Y.: Integrating diagnosis rules into deep neural networks for bladder cancer staging. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2301–2304 (2020)

    Google Scholar 

  25. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  26. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Serial Nos. 61976134, 62173252, 61991410) and Natural Science Foundation of Shanghai (NO 21ZR1423900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X., Yue, X., Xu, Z., Chen, Y. (2022). Harnessing Deep Bladder Tumor Segmentation with Logical Clinical Knowledge. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics