Skip to main content

Domain Adaptive Mitochondria Segmentation via Enforcing Inter-Section Consistency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Deep learning-based methods for mitochondria segmentation require sufficient annotations on Electron Microscopy (EM) volumes, which are often expensive and time-consuming to collect. Recently, Unsupervised Domain Adaptation (UDA) has been proposed to avoid annotating on target EM volumes by exploiting annotated source EM volumes. However, existing UDA methods for mitochondria segmentation only address the intra-section gap between source and target volumes but ignore the inter-section gap between them, which restricts the generalization capability of the learned model on target volumes. In this paper, for the first time, we propose a domain adaptive mitochondria segmentation method via enforcing inter-section consistency. The key idea is to learn an inter-section residual on the segmentation results of adjacent sections using a CNN. The inter-section residuals predicted from source and target volumes are then aligned via adversarial learning. Meanwhile, guided by the learned inter-section residual, we can generate pseudo labels to supervise the segmentation of adjacent sections inside the target volume, which further enforces inter-section consistency. Extensive experiments demonstrate the superiority of our proposed method on four representative and diverse EM datasets. Code is available at https://github.com/weih527/DA-ISC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bermúdez-Chacón, R., Altingövde, O., Becker, C., Salzmann, M., Fua, P.: Visual correspondences for unsupervised domain adaptation on electron microscopy images. IEEE Trans. Med. Imaging 39(4), 1256–1267 (2019)

    Article  Google Scholar 

  2. Bermúdez-Chacón, R., Márquez-Neila, P., Salzmann, M., Fua, P.: A domain-adaptive two-stream u-net for electron microscopy image segmentation. In: ISBI (2018)

    Google Scholar 

  3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  4. Gerhard, S., Funke, J., Martel, J., Cardona, A., Fetter, R.: Segmented anisotropic sstem dataset of neural tissue. Figshare (2013)

    Google Scholar 

  5. Guan, D., Huang, J., Xiao, A., Lu, S.: Domain adaptive video segmentation via temporal consistency regularization. In: ICCV (2021)

    Google Scholar 

  6. Januszewski, M., Jain, V.: Segmentation-enhanced cyclegan. bioRxiv (2019)

    Google Scholar 

  7. Kasahara, T., et al.: Depression-like episodes in mice harboring mtdna deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep networks for 3D mitochondria instance segmentation. In: ISBI (2022)

    Google Scholar 

  10. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3d semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  11. Li, Z., Chen, X., Zhao, J., Xiong, Z.: Contrastive learning for mitochondria segmentation. In: EMBC (2021)

    Google Scholar 

  12. Liu, D., et al.: Pdam: a panoptic-level feature alignment framework for unsupervised domain adaptive instance segmentation in microscopy images. IEEE Trans. Med. Imaging 40(1), 154–165 (2020)

    Article  Google Scholar 

  13. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR (2013)

    Google Scholar 

  14. Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2), 442–451 (1975)

    Google Scholar 

  15. Nightingale, L., de Folter, J., Spiers, H., Strange, A., Collinson, L.M., Jones, M.L.: Automatic instance segmentation of mitochondria in electron microscopy data. bioRxiv (2021)

    Google Scholar 

  16. Nishimura, K., Hayashida, J., Wang, C., Ker, D.F.E., Bise, R.: Weakly-supervised cell tracking via backward-and-forward propagation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 104–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_7

    Chapter  Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  18. Peng, J., Yi, J., Yuan, Z.: Unsupervised mitochondria segmentation in EM images via domain adaptive multi-task learning. IEEE J. Sel. Topics Sig. Process. 14(6), 1199–1209 (2020)

    Article  Google Scholar 

  19. Roels, J., Hennies, J., Saeys, Y., Philips, W., Kreshuk, A.: Domain adaptive segmentation in volume electron microscopy imaging. In: ISBI (2019)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10(1), 1–12 (2019)

    Article  Google Scholar 

  22. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  23. Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7

    Chapter  Google Scholar 

  24. Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 191–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_18

    Chapter  Google Scholar 

  25. Yi, J., Yuan, Z., Peng, J.: Adversarial-prediction guided multi-task adaptation for semantic segmentation of electron microscopy images. In: ISBI (2020)

    Google Scholar 

  26. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  27. Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R &D Program of China under Grant 2017YFA0700800, the National Natural Science Foundation of China under Grant 62021001, the University Synergy Innovation Program of Anhui Province No. GXXT-2019-025, and Anhui Provincial Natural Science Foundation under grant No. 1908085QF256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xiong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 208 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, W., Liu, X., Cheng, Z., Zhang, Y., Xiong, Z. (2022). Domain Adaptive Mitochondria Segmentation via Enforcing Inter-Section Consistency. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics