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Abstract. Domain shift and label scarcity heavily limit deep learning
applications to various medical image analysis tasks. Unsupervised do-
main adaptation (UDA) techniques have recently achieved promising
cross-modality medical image segmentation by transferring knowledge
from a label-rich source domain to an unlabeled target domain. How-
ever, it is also difficult to collect annotations from the source domain in
many clinical applications, rendering most prior works suboptimal with
the label-scarce source domain, particularly for few-shot scenarios, where
only a few source labels are accessible. To achieve efficient few-shot cross-
modality segmentation, we propose a novel transformation-consistent
meta-hallucination framework, meta-hallucinator, with the goal of learn-
ing to diversify data distributions and generate useful examples for en-
hancing cross-modality performance. In our framework, hallucination
and segmentation models are jointly trained with the gradient-based
meta-learning strategy to synthesize examples that lead to good seg-
mentation performance on the target domain. To further facilitate data
hallucination and cross-domain knowledge transfer, we develop a self-
ensembling model with a hallucination-consistent property. Our meta-
hallucinator can seamlessly collaborate with the meta-segmenter for learn-
ing to hallucinate with mutual benefits from a combined view of meta-
learning and self-ensembling learning. Extensive studies on MM-WHS
2017 dataset for cross-modality cardiac segmentation demonstrate that
our method performs favorably against various approaches by a lot in
the few-shot UDA scenario.

Keywords: Domain adaptation · Meta-learning · Semi-supervised learn-
ing · Segmentation

ar
X

iv
:2

30
5.

06
97

8v
1 

 [
cs

.C
V

] 
 1

1 
M

ay
 2

02
3



2 Zhao et al.

1 Introduction

Deep learning has made tremendous advancements in recent years, achieving
promising performance in a wide range of medical imaging applications, such as
segmentation. [15,19,31]. However, the clinical deployment of well-trained models
to unseen domains remains a severe problem due to the distribution shifts across
different imaging protocols, patient populations, and even modalities. While it is
a simple but effective approach to fine-tune models with additional target labels
for domain adaptation, this would inevitably increase annotation time and cost.
In medical image segmentation, it is known that expert-level pixel-wise annota-
tions are usually difficult to acquire and even infeasible for some applications.
In this regard, considerable efforts have been devoted in unsupervised domain
adaptation (UDA), including feature/pixel-level adversarial learning [32,23,6,4],
self-training [34,14], and disentangled representation learning [24,20,16]. Current
UDA methods mainly focus on leveraging source labeled and target unlabeled
data for domain alignment. Source annotations, however, are also not so easy to
access due to expert requirements and privacy problems. Therefore, it is essen-
tial to develop a UDA model against the low source pixel-annotation regime. For
label-efficient UDA, Zhao et al. [29] proposed an MT-UDA framework, advancing
self-ensembling learning in a dual-teacher manner for enforcing dual-domain con-
sistency. In MT-UDA, rich synthetic data was generated to diversify the training
distributions for cross-modality medical image segmentation, thereby requiring
an extra domain generation step in advance. In addition, images generated from
independent networks have a limited potential to capture complex structural
variations across domains.

On the other hand, many not-so-supervised methods, including self-supervised
learning [25,7], semi-supervised learning [1,30,12,11], and few-shot learning [17,21]
have been developed to reduce the dependence on large-scale labeled datasets
for label-efficient medical image segmentation. However, these methods have not
been extensively investigated for either extremely low labeled data regime, e.g.,
one-shot scenarios or the severe domain shift phenomena, e.g., cross-modality
scenarios. Recent works suggest that atlas-based registration and augmenta-
tion techniques advance the development of few-shot segmentation [3,27] and
pixel-level domain adaptation [10,18]. By approximating styles/deformations
between different images, these methods can generate the augmented images
with plausible distributions to increase the training data and improve the model
generalizability. However, image registration typically increases computational
complexity, while inaccurate registrations across modalities can negatively im-
pact follow-up segmentation performance, especially with limited annotations.
In this regard, we pose a natural question: How can we generate useful sam-
ples to quickly and reliably train a good cross-modality segmentation model with
only a few source labels? Recently, model-agnostic meta-learning (“learning to
learn”) [5] with the goal of improving the learning model itself via the gradient
descent process is flexible and independent of any model, leading to broad appli-
cations in few-shot learning [26,9] and domain generalization [2,13,8]. Motivated
by these observations, we argue that meta-learning can also enable the genera-
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Fig. 1. Overview of our transformation-consistent meta-hallucination framework. In
meta-training, hallucinator G and segmenter F are optimized together with collab-
orative objectives. In meta-testing, the transformations generated by G are used for
hallucination-consistent self-ensembling learning to boost cross-modality performance.

tor/hallucinator to “learn to hallucinate” meaningful images and obtain better
segmentation models under few-shot UDA settings. Therefore, we aim to build a
meta-hallucinator for useful sample generation to advance model generalizability
on the target domain using limited source annotations.

In this work, we propose a novel transformation-consistent meta-hallucination
scheme for unsupervised domain adaptation under source label scarcity. More
specifically, we introduce a meta-learning episodic training strategy to optimize
both the hallucination and segmentation models by explicitly simulating struc-
tural variances and domain shifts in the training process. Both the hallucination
and segmentation models are trained concurrently in a collaborative manner
to consistently improve few-shot cross-modality segmentation performance. The
hallucination model generates helpful samples for segmentation, whereas the seg-
mentation model leverages transformation-consistent constraints and segmenta-
tion objectives to facilitate the hallucination process. We extensively investigate
the proposed method with the application of cross-modality cardiac substructure
segmentation using the public MM-WHS 2017 dataset. Experimental results and
analysis have demonstrated the effectiveness of meta-hallucinator against domain
shift and label scarcity in the few-shot UDA scenario.

2 Method

Let there be two domains: source Ds and target Dt, sharing the joint input and
label space X ×Y. Source domain contains N labeled samples {(xsi , ysi )}Ni=1 and

M unlabeled samples {(xsi )}Mi=1, where N is much less than M , while target

domain includes P unlabeled samples {(xti)}
P
i=1. We aim to develop a segmen-

tation model (segmenter) Fθ : X → Y by leveraging available data and labels
so that it can adapt well to the target domain. The overview of the proposed
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transformation-consistent meta-hallucination framework is presented in Fig. 1,
which we will discuss in detail in this section.

2.1 Gradient-based meta-hallucination learning

In each iteration of gradient-based meta-learning [5], the training data is ran-
domly split into two subsets, i.e., meta-train set Dtr and meta-test set Dte to
simulate various tasks, e.g., domain shift or few-shot scenarios, for episodic train-
ing to promote robust optimization. Specifically, each episode includes a meta-
train step and a meta-test step. In meta-training, the gradient of a meta-train
loss Lmeta−train on Dtr is first back-propagated to update the model parameters
θ → θ′. During the meta-test stage, the resulting model Fθ′ is further used to
explore Dte via a meta-test loss Lmeta−test for fast optimization towards the
original parameters θ. Intuitively, such meta-learning schemes not only learn the
task on Dtr, but also learn how to generalize on Dte for fast adaptation.

In label-scarce domain shift scenarios, we are encouraged to hallucinate use-
ful samples for diversifying training distributions to deal with label scarcity and
domain shift. To this end, we introduce a “hallucinator” module GΨ to augment
the training set. The objective of the hallucinator is to narrow the domain gap
at the image level and generate useful samples for boosting the segmentation
performance. We advance the hallucinator into the meta-learning process and
promote it to learn how to hallucinate useful samples for the following segmen-
tation model. Specially, in a meta-train step, the parameters Ψ and θ of the
hallucinator GΨ and the segmenter Fθ, respectively, are updated with the meta-
train set Dtr via an inner-loop update, defined as:

ψ′ ← ψ − α∇ψLmeta−train (ψ, θ) ;

θ′ ← θ − α∇θLmeta−train (ψ, θ) ,
(1)

where α denotes the learning rate of the hyperparameters. For the meta-train
loss, the segmenter is optimized using the segmentation loss Lseg on the enlarged
dataset, whereas the hallucinator objective is to minimize the transformation loss
Ltrans between source and target images. It is noted that the gradient of the
segmentation loss is back-propagated to both hallucinator parameters Ψ and
segmenter parameters θ. Therefore, the total meta-train objective is defined as:

Lmeta−train = Lseg + λtransLtrans, (2)

where λtrans is the weighting trade-off parameter. For an input pair consisting
of a moving source image and a fixed target image {xsi , xti}, the hallucinator
aims to generate a moved target-like image xs→ti . We promote fast and robust
optimization of both hallucinator and segmenter by sampling tasks of different
input pairs for meta-training and meta-testing to simulate structural variances
and distribution shifts across domains.
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2.2 Hallucination-consistent self-ensembling learning

To effectively leverage the rich knowledge hidden in the unlabeled data, we take
advantage of the mean-teacher model based on self-ensembling [22]. Specially,
we construct a teacher F tea with the same architecture as the segmenter and
update it with an exponential moving average (EMA) of the segmenter param-
eters θ at different training steps, i.e., θteat = βθteat−1 + (1 − β)θt, where t and
β represent the current step and the EMA smoothing rate, respectively. With
a larger β, the teacher model is less reliant on the student model parameters.
In general self-ensembling learning, the predictions of the student and teacher
models with inputs under different perturbations, such as noises are encouraged
to be consistent for model regularization, i.e., F tea (xi; θ

tea
t , ξ′) = F (xi; θt, ξ),

where ξ′ and ξ represent different perturbations. In contrast to the geometric
transformation-invariant property in the context of classification tasks, segmen-
tation is desired to be transformation equivariant at the spatial level. In other
words, if the input is transformed with a function f , the output should be trans-
formed in the same manner. Several previous studies [12,28] have demonstrated
that the transformation consistency is beneficial for enhancing the regularization
of self-ensembling models via various transformation operations, such as rota-
tion. In light of these, we introduce a hallucination-consistent self-ensembling
scheme to further promote unsupervised regularization. We apply the same spa-
tial transformations produced by the hallucinator to the student inputs and
the teacher outputs, and enable the alignment between their final outputs, i.e.,
GΨ (F tea (xi; θ

tea
t )) = F (GΨ (xi); θt). The student model is regularized by min-

imizing the difference between the outputs of the student and teacher models
with a mean square error (MSE) loss. Then, the hallucination-consistent loss is
defined as:

Lcon =
1

N

N∑

i=1

∥∥GΨ ((F tea
(
xi; θ

tea
t , ξ′

)
)−F (GΨ (xi); θt, ξ))

∥∥2 , (3)

where N denotes the number of samples. Different from stochastic transforma-
tions, such as random rotation, our hallucination process is learned via meta-
learning, producing more meaningful target-like samples in spatial and appear-
ance for domain adaptation. In addition, the hallucination consistency can be
used to regularize the meta-optimization of the hallucinator. Note that we only
impose the hallucination-consistent loss in the meta-test step since we expect
such regularization on unseen data for robust adaptation, thereby improving the
network generalization capacity. Then, the meta-test loss is defined as:

Lmeta−test = Lseg + +λconLcon + λtransLtrans, (4)

where λcon is to control the strength of the unsupervised consistency loss. Finally,
the total objective of meta-learning is defined as:

argmin
ψ,θ

Lmeta-train (Dtr ;ψ, θ) + Lmeta-test (Dte ;ψ′, θ′) . (5)
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3 Experiments and Results

Dataset and evaluation metrics. In light of our emphasis on cross-modality
segmentation with distinct distribution shifts, we employ the public available
Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 dataset [33] to
evaluate our meta-hallucinator framework. The dataset contains unpaired 20
MR and 20 CT scans with segmentation maps corresponding to different cardiac
substructures. For unsupervised domain adaptation, MR and CT are employed
as source Ds and target Dt, respectively. Following [4], the volumes in each
domain are randomly divided into a training set (16 scans) and a testing set
(4 scans). For the study on label-scarce scenarios, experiments are conducted
with 1-shot and 4-shots source labels. We repeat 4 times with different samples
for one-shot scenarios to avoid randomness. For pre-processing, each volume is
resampled with unit spacing, and the slices centered on the heart region in the
coronal view are cropped to 256 × 256 and then normalized with z-score into
zero mean and unit standard deviation. Four substructures of interest are used
for evaluation, i.e., ascending aorta (AA), left atrium blood cavity (LAC), left
ventricle blood cavity (LVC), and myocardium of the left ventricle (MYO). Two
commonly used metrics for segmentation, i.e., Dice score (Dice) and Average
Surface Distance (ASD) [29] are employed to evaluate different methods. Both
metrics are reported with the mean performance and the cross-subject variations.

Implementation details. We employ the 2D U-Net [19] as the segmentation
model due to the large variation on slice thickness cross domains. For the halluci-
nator, we consider image-and-spatial transformer networks (ISTNs) [18], includ-
ing a CycleGAN-like model [32] for style translation and a spatial transformer
network for image registration. Considering memory limitations, we only involve
the spatial transformer network in the meta-learning process. More Specifically,
we first follow CycleGAN [32] to achieve unpaired image translation for image
adaptation. Since limited labels are provided in the source domain, we transform
target images to source-like images for training and testing. Then, the pairs of
source images and source-like images are fed into our scheme for augmentation
and segmentation. For segmentation loss, we use the combination of Dice loss and
Cross-entropy loss [29], while the transformation loss involved in meta-learning
is based on MSE loss between source images and source-like images [18]. We
train the whole framework for 150 epochs using Adam optimizer. The batch size
is set as 32, including 8 labeled data, 8 augmented data, and 16 unlabeled data.
The number of pairs for meta-train and meta-test are set as 16 and 8, respec-
tively. The learning rate for inner-loop update is set as 0.001. The learning rate
for meta-optimization is linearly warmed up from 0 to 0.005 over the first 30
epochs to avoid volatility in early iterations. The EMA decay rate β is set as
0.99, and hyperparameters λcon and λtrans are ramped up individually with the
function λ(t) = 10× exp{−5 (1− t/150)

2} (t denotes the current iteration). We
apply data augmentations, like random rotation, and extract the largest con-
nected component for each substructure in the 3D mesh for post-processing in
all experiments.
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Table 1. Segmentation performance of different approaches.

Method
Dice (%) ↑ ASD (voxel) ↓

AA LAC LVC MYO Average AA LAC LVC MYO Average

4-shots

Supervised-only 85.09.2 87.13.7 75.211.6 63.020.2 77.611.2 2.20.7 3.31.3 5.13.0 5.13.8 3.92.2

W/o adaptation 18.919.7 4.64.6 20.717.0 11.612.5 14.013.5 48.234.0 30.815.0 35.212.7 40.622.6 38.721.1

ADDA [23] 35.524.3 4.24.2 2.13.6 36.93.9 19.79.0 30.938.0 47.931.2 57.421.7 11.83.5 3723.6

CycleGAN [32] 43.727.7 49.812.2 43.226.9 23.124.7 40.022.9 25.418.3 12.94.7 17.919.0 36.431.5 23.118.4

SIFA [4] 42.317.4 61.06.6 46.421.1 42.020.2 47.916.3 10.23.4 8.02.8 10.55.6 8.24.3 9.24.0

MT [22] 59.01.8 59.325.8 45.319.2 35.919.2 49.916.5 6.81.0 6.63.6 10.36.8 9.96.2 8.44.4

TCSM [12] 65.33.1 62.716.9 50.913.0 38.37.8 54.310.2 5.60.6 6.22.3 9.66.6 8.22.8 7.43.1

ISTN [18] 34.012.0 61.014.6 47.117.3 32.913.6 43.814.4 10.01.6 5.41.3 9.74.2 10.74.2 9.02.8

VoxelMorph [3] 57.67.2 67.212.9 41.121.0 35.79.3 50.412.6 6.61.1 7.22.7 9.96.3 9.82.8 8.43.2

MT-UDA [29] 67.26.6 80.04.1 72.18.4 56.211.8 68.97.8 6.32.5 4.11.0 5.72.6 6.82.5 5.72.2

Ours 75.68.3 75.111.6 82.34.6 69.66.8 75.611.3 4.82.9 5.12.5 4.31.7 4.90.9 4.82.0

1-shot

ADDA [23] 17.312.4 12.77.1 15.712.1 15.211.7 15.210.8 47.1 12.8 34.54.7 40.512.0 37.310.4 39.910.0

CycleGAN [32] 8.96.3 10.011.7 14.213.2 7.16.9 10.19.5 28.52.8 31.77.1 22.06.7 21.78.7 26.06.3

SIFA [4] 15.312.0 26.321.5 16.812.5 13.010.3 17.914.0 37.615.4 25.321.4 21.712.7 18.59.3 25.814.7

MT [22] 20.116.2 18.29.4 24.113.9 21.15.5 21.011.3 41.822.0 25.76.0 24.59.5 266.8 29.511.1

TCSM [12] 32.715.8 30.89.3 37.713.9 20.15.3 30.311.0 28.011.2 31.912.2 23.311.0 23.17.1 26.69.0

ISTN [18] 24.510.0 21.55.9 26.615.3 18.511.7 22.810.7 32.25.8 46.812.4 25.610.6 27.88.5 33.19.3

VoxelMorph [3] 18.96.1 25.75.8 28.611.3 23.47.6 24.27.7 45.99.4 28.84.9 21.85.0 21.85.2 29.66.1

MT-UDA [29] 37.611.3 43.611.1 47.515.2 36.05.7 41.210.8 26.811.4 23.512.2 16.84.7 16.73.0 21.07.8

Ours 64.410.3 30.910.1 59.16.6 52.95.0 51.88.0 6.31.7 33.626.5 8.51.7 7.91.7 14.17.9

Comparisons of different methods. We implement several well-established
UDA methods, i.e., a feature adaptation method (ADDA) [23], an image adap-
tation method (CycleGAN) [32], and a synergistic image and feature adapta-
tion method (SIFA) [4], two recent popular SSL methods, i.e., MT [22] and
TCSM [12], and two representative augmentation (Aug) methods via registra-
tion, ISTN [18] and VoxelMorph [3]. It is noted that we use CycleGAN to
close the domain gap at the image level for SSL and Aug methods. Besides, we
implement the state-of-the-art few-shot UDA method, MT-UDA [29] for com-
parison. Following previous practices [4,29], we conduct experiments with the
lower “W/o adaptation” baseline (i.e., directly applying the model trained
with source labels to target domain) and the upper “Supervised-only” base-
line (i.e., training and testing on the target domain).

Fig. 2. Visualization of segmentation results generated by different methods.
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The results are presented in Table 1. We can see that there is a signifi-
cant performance gap between the upper and lower bounds due to the domain
shifts. Overall, various UDA methods show unsatisfactory adaptation perfor-
mance compared to the “W/o adaptation” baseline with limited source labels.
It is observed that SSL methods, i.e., MT and TCSM can help relax the depen-
dence on source labels by leveraging unlabeled data, while Aug methods such
as ISTN and VoxelMorph can also improve the segmentation performance by
generating augmented samples. These results suggest that SSL and Aug meth-
ods can help unsupervised domain adaptation under source label scarcity. No-
tably, our method achieves better performance than the UDA, SSL, and Aug
methods by a large margin, and outperforms MT-UDA by 6.7% on Dice and
0.9mm on ASD, showing the effectiveness of our transform-consistent meta-
hallucination scheme for few-shot UDA. With fewer source labels (1-shot), our
method shows larger performance improvements than other methods, demon-
strating that meta-hallucinator is beneficial in label-scarce adaptation scenarios.
Moreover, we present the qualitative results of different methods trained on four
source labels in Fig. 2 (due to page limit, we only show the best methods in
UDA (SIFA), SSL (TCSM) and Aug (VoxelMorph), as well as MT-UDA. More
visual comparisons are shown in Appendix). It is observed that our method pro-
duces fewer false positives and segments cardiac substructures with smoother
boundaries.

Fig. 3. Boxplot of ablation results (Dice[%] and ASD [voxel]) on different components.

Ablation study. Here we conduct an ablation analysis on key components
of the proposed method, as shown in Fig. 3. We start by advancing mean
teacher (MT) into meta-learning with LSeg, i.e., Meta-Seg, emphasizing that
Meta-Seg significantly improves the segmentation performance and outperforms
most UDA methods. We then incorporate the hallucination module into meta-
learning for data augmentation, referred to as Meta-Hal, which yields higher
Dice and ASD than Meta-Seg, demonstrating the effectiveness of the meta-
hallucination scheme. Finally, by adding hallucination-consistent constraints to
enhance the regularization effects for self-ensembling training, consistent perfor-
mance improvements are obtained with our method.
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4 Conclusions

In this work, we propose a novel transformation-consistent meta-hallucination
framework for improving few-shot unsupervised domain adaptation in cross-
modality cardiac segmentation. We integrate both the hallucination and segmen-
tation models into meta-learning for enhancing the collaboration between the
hallucinator and the segmenter and generating helpful samples, thereby improv-
ing the cross-modality adaptation performance to the utmost extent. We further
introduce the hallucination-consistent constraint to regularize self-ensembling
learning simultaneously. Extensive experiments demonstrate the effectiveness of
the proposed meta-hallucinator. Our meta-hallucinator can be integrated into
different models in a plug-and-play manner and easily extended to various seg-
mentation tasks suffering from domain shifts or label scarcity.
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(a) 4-shots

(b) 1-shot

Fig. 1: Visual comparisons on MM-WHS dataset for unsupervised domain adap-
tation with different number of source labels. Best viewed in color with
zoom.
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2 F. Author et al.

Fig. 2: Visualization of some hallucinated examples. For MR-to-CT direction,
the real MR images are first transformed into fake CT images with a similar
appearance to CT images. Then, the obtained transformed images are warped
by our method. Our warped images remain the main original contents with
structural semantics while diversifying the realistic data distributions.

Fig. 3: Boxplots of ablation results by different components in our method on
four cardiac substructures.


