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Abstract. Self-supervised learning methods based on image patch re-
construction have witnessed great success in training auto-encoders, whose
pre-trained weights can be transferred to fine-tune other downstream
tasks of image understanding. However, existing methods seldom study
the various importance of reconstructed patches and the symmetry of
anatomical structures, when they are applied to 3D medical images. In
this paper we propose a novel Attentive Symmetric Auto-encoder (ASA)
based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
We conjecture that forcing the auto-encoder to recover informative image
regions can harvest more discriminative representations, than to recover
smooth image patches. Then we adopt a gradient based metric to esti-
mate the importance of each image patch. In the pre-training stage, the
proposed auto-encoder pays more attention to reconstruct the informa-
tive patches according to the gradient metrics. Moreover, we resort to
the prior of brain structures and develop a Symmetric Position Encod-
ing (SPE) method to better exploit the correlations between long-range
but spatially symmetric regions to obtain effective features. Experimen-
tal results show that our proposed attentive symmetric auto-encoder
outperforms the state-of-the-art self-supervised learning methods and
medical image segmentation models on three brain MRI segmentation
benchmarks. [|
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1 Introduction

Accurate segmentation of brain lesion, tumour or tissue for Magnetic Resonance
Imaging (MRI) data is essential for building a computer-aided diagnosis (CAD)
system, and helps medical experts improve diagnosis and treatment planning. It
is necessary to develop an automatic segmentation tool for brain MRI.

Deep convolutional neural networks (DCNNs) have achieved success in brain
MRI segmentation [T|2TI30], but their local receptive fields fail to capture long-
range spatial dependencies. Recently, transformer-based models [2I14] have drawn
extensive attention and shown the state-of-the-art results on 3D image segmen-
tation [277I29]. These methods collect dense correlations between long-range
voxels for representation learning, but they require numerous voxel-level anno-
tations that is scarce in brain medical image. Self-supervised learning (SSL)
[2212325] uses unlabeled data to pre-train a model that can be fine-tuned to
improve the results on downstream tasks. Recently, reconstruction-based SSL
methods [828], which pre-train transformers for patch-level recovering with nat-
ural images. If these methods are applied to 3D medical images, they may fail
to model the prior of a brain because they treat all recovered patches equally.
Some recent work [24] pre-trains transformers for medical images but it neglects
the symmetry of brain structures and the different importance of brain regions.

Motivated by the above observations, we consider a novel transformer-based
SSL framework for brain MRI segmentation. Despite individual variations, the
structure of brain tissues is relatively stable while lesions have their particular
textures and appearance. During the SSL, reconstructing a smooth brain region
is not challenging and may cause over-fitting. On the contrary, synthesizing an
informative image patch is more difficult, which requires mining the intrinsic
representations of anatomical structures. In this work, we propose an attentive
reconstruction loss weighting different image regions with their informativeness
that is measured by a handcrafted gradient-based score. Moreover, symmetry is
an essential prior of brain structure. As transformers encode the coordinates of
image patches for computing correlations between different positions, we intro-
duce the symmetry to design a new position encoding method which returns the
same code for two distant but symmetrical positions. Transformers with the en-
coding can enhance the visual features by emphasizing the correlations between
contralateral brain regions. Finally, we integrate the proposed loss and encoding
with a masked autoencoder to build our proposed SSL framework. Our contri-
butions are summarized as: (1) a novel attentive reconstruction loss function,
(2) a new symmetric position encoding method, and (3) an SSL framework at-
tentive symmetric autoencoder for brain MRI segmentation. (4) Experimental
results show that our method outperforms the state-of-the-art SSL methods and
medical image segmentation models on three public benchmarks.
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Fig. 1: The architecture of Attentive Symmetric Autoencoder. SPE means sym-
metric position encoding.

2 Methodology

2.1 Attentive Symmetric Autoencoder

We propose a novel Attentive Symmetric Autoencoder (ASA) that can be trained
to obtain generalizable model weights for adapting brain MRI segmentation
tasks. As shown in Fig[I] the proposed ASA consists of a pair of encoder and de-
coder with symmetric position encoding (SPE) and an attentive reconstruction
loss. During the self-supervised training of ASA, the input 3D image is divided
into regular non-overlapping image patches (of size sxsxs). P% of these image
patches are randomly masked and only the unmasked patches are visible. After
a linear projection, each visible patch is embedded into a feature vector, which
is added with its Symmetric Position Encoding (SPE) to produce the encoder
input. The encoder outputs the same number of vectors as its input. Mask To-
kens are the same learnable vector added with different SPEs. Each mask token
corresponds to a masked image patch. The encoder output is concatenated with
the mask tokens to form the decoder input. The decoder reconstructs all the
image patches and only the masked ones are used to compute the proposed loss.

Attentive Reconstruction Loss. Considering that learning to recover flat-
ten regions is less helpful for encouraging the model to harvest discriminative
representations. We develop an attentive reconstruction loss function that em-
phasizes the informative regions of brain MRI. To estimate the information of
an image patch, we adopt a gradient based metric for 3D images. Inspired by
3D VHOG [3], we calculate the gradient vector § = (g, gy, g-) for each voxel by
applying the filter mask of [-1, 0, 1]. In spherical coordinates, we use two scalars
0 and ¢ to represent the orientation of a voxel. # and ¢ can be calculated as:

0 = cos™! (g—z>,¢ = |atan2(gy, gz)|- (1)

\/ 92+ g5+ g2

For each image patch we build a 2D histogram G and the number of bins is
b x b. To compute the values G, we traverse each voxel in the image patch.
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Fig. 2: Symmetric Position Encoding.

Let 6, ¢ denote the orientation of the current voxel. We first determine the bin
indexes of the voxel as r = |0/(7/b)],c = |¢/(7/b)]. And then we accumulate
[|g]| (the gradient magnitude of the current voxel) to the corresponding bin (r, c)
of the 2D histogram G. After processing all voxels in an image patch, Lo norm
is performed on G, the histogram of the patch. We calculate the mean of G as
G for each image patch. G is normalized among all N masked image regions to
characterize the relative importance p; as p; = %

Our proposed loss function adopts mean squared error (MSE) to measure the
pixel-level difference between the recovered image areas and the original ones,
and pays more attention to the informative brain regions using the gradient-
based weight p;. The overall loss can be formulated as Eq. :

N M
LX,Y) =Y (pi- Y _(Xij = Yi)?/M). (2)

i=1 j

where X,Y are the reconstructed and the original images. N is the number of
masked image patches in an image. M is the voxel number in an image patch.
X;; denotes the j-th voxel of the i-th patches in the image X.

Symmetric Position Encoding. We observe the left-right symmetry of brain
structures, and propose a Symmetric Position Encoding (SPE) method. The
proposed method narrow the encoding difference of two symmetric image posi-
tions, and can encourage the model to harvest better features from these two
correlated regions. For the patches in the same horizontal plane (Fig.[2|(a)), the
vanilla position encoding [26] of the top left is largely different from that of the
top right (Fig. (b)), even though these regions have similar contents. However,
using our proposed SPE, the leftmost and the rightmost positions (in the same
row) can share the same encoding. Let Tx HxW | (t, h, w) denote the patch num-
ber of an image and the coordinate of an image patch. The symmetric position
encoding is computed as Eq. :

Pos = (T? -t + H -h — |W/2 — w| + W/2)/(10000%/P),

3
PE(t, h,w,2i) = sin(Pos), PE(t,h,w,2i + 1) = cos(Pos),1 <i < |D/2], )
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Fig. 3: The architecture of network in downstream tasks.

where D is the dimension number of the SPE vector and is set to the channel
number of image patch embeddings. PE(-) returns the 2i-th/(2i 4 1)-th element
of the SPE vector for a patch at (¢, h,w). As Fig. 1| shows, the SPE method is
used for twice, one for patch embeddings, the other for mask tokens.

2.2 Network Architecture

The proposed ASA model is to provide pre-trained model weights for the down-
stream task, brain MRI segmentation. Here we describe the architecture of the
ASA model and the image segmentation model. The encoder and the decoder of
the ASA are based on Vision Transformer (ViT) [2]. The standard ViT [2] uses
vanilla self-attention (SA), which leads to high computational cost, especially
when processing 3D images. For efficiency, we develop Linear Window-based
Multi-head Self-attention (LW-MSA) and Shifted Linear Window-based Multi-
head Self-attention(SLW-MSA). Inspired by SwinT [16], we flatten 3D patches
into a sequence of patch embeddings, and split the sequence into windows of
size S. LW-MSA computes self-attention within each 1D window. SLW-MSA
shifts the sequence by |5 ] before computing a LW-MSA module, and shifts the
sequence by |5 | reversely after the LW-MSA module. LW-MSA and SLW-MSA
are computed on a patch level since we convert each image patch to a feature
vector via a patch embedding layer at the very beginning. LW-MSA and SLW-
MSA are stacked alternately to extract cross-windows features and to build a
shifted-window ViT (SW-ViT) for our ASA model. For brain MRI segmentation,
we build a U-net with the ASA encoder as the backbone, as shown in Fig. [3]

3 Experiments and Results

Implementation Details To pre-train the ASA model, we use center-cropping
augmentation, Xavier uniform initializer [5] for SW-ViT blocks and set the
hyper-parameters following [8] (see Table [1f(a)). We follow MAE [§] and set P to
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75. The patch size s is 8. To fine-tune the image segmentation model (Fig, we
adopt the online data augmentation [I0] (random rotation, scaling, flipping and
Gamma transformation). Only the encoder of the ASA is used for initialization.
Other settings are in Table (b) The experiments are run with PyTorch. For
the pre-training we use four 32GB GPUs (NVIDIA V100). It takes 1 day with
the early-stop strategy. The fune-tuning takes 1-2 days with 1 GPU.

Table 1: The hyper-parameters setting for pre-training and fine-tuning.

config ‘ value config ‘ value

optimizer AdamW 18] optimizer SGD

optimizer momentum | 81, B2 =0.9, 0.95  optimizer momentum| 0.99

weight decay 0.05 weight decay 3e-05

learning rate schedule| cosine decay|I7] initial learning rate | 0.01

warmup epochs|6] le-6 batch size 2

base learning rate 1.5e-4 num_ epoch 1000

batch size 96 loss Dice and CE loss
(a) Pre-training setting. (b) Fine-tuning setting.

Datasets. For pre-training our ASA model, we adopt T1 MRI from 2 public
datasets, including 9952 cases from Alzheimer’s Disease Neuroimaging Initia-
tive(ADNI) datasetﬂ [I1] and 2041 cases from Open Access Series of Imaging
Studies(OASIS) datasetﬂ [13]. We convert the data into Brain Imaging Data
Structure (BIDS), affinely align the T1 images to the MNI space via Clinica
platform [4], strip the brain skull from these images with ROBEX [9] and crop
a 128 x 128 x 128 region at their center.

For downstream task, we adopt 3 brain MRI segmentation benchmarks:

Brain Tumor Segmentation (BraTS) 2021 datasetﬂ [19] has 1251 subjects.
Each subject has 4 aligned MRI modalities: T1, T1Gd, T2 and T2-FLAIR. The
annotations consist of GD-enhancing tumor (ET), peritumoral edematous (ED)
and necrotic tumor core (NCR), which are combined into 3 nested sub-regions:
Whole Tumor (WT), Tumor Core (TC), Enhancing Tumor (ET). Following [29],
we set the ratio of training/validation/test as 7:1:2.
Internet Brain Segmentation Repository (IBSR) datasetﬂ [20] has 18 T1-
weighted MRI volumes of 4 healthy females and 14 healthy males. The ground
truth (GT) has 3 categories: Cerebrospinal Fluid (CSF), Gray Matter (GM),
White Matter (WM). We adopt 12 cases for training and 6 cases for testing.

! http://adni.loni.usc.edu/

2 https:/ /www.oasis-brains.org/

3 http://www.braintumorsegmentation.org/
4 https://www.nitrc.org/projects /ibsr/
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Table 2: Comparison on BraTS 2021 dataset. The first group are several com-
peting methods. The best performance is in bold.

Task BraTsS 2021
Metric Dice(%)1 HD95(mm)]
Anatomy WT TC ET WT TC ET

nnFormer [29] 91.46 87.42 82.22 10.15 9.59 16.78
TransBTS [27] 92.06 88.20 79.46 4.98 4.86 16.32

UNETR [7] 92.12 88.32 79.61 4.91 4.67 16.32
3D-RPL [23] 93.92 90.13 85.92 3.74 3.98 13.71
3D-Jig [23] 93.87 90.14 86.01 3.85 3.94 11.79
Ours 94.03 90.29 86.76 3.61 3.78 10.25

BnNner [lep MeT

--- _

RPL UNETR TransBTS nnFormer Ours GT

Fig. 4: Visualization of segmentation results on BraTS 2021 dataset.

White Matter Hyperintensities (WMH) dataset]] [[2] involves 60 T1 im-
ages with pixel-level labels of White Matter Hyperintensities(WMH). We process
data as [I5] and use 36 cases for training and the rest for testing.

Evaluation Metric. We calculated Dice coefficient scores (Dice) and 95% Haus-
dorff Distance (HD95) to evaluate the segmentation results in our experiments.

Comparison with the State-of-the-art. We compare our method with exist-
ing 3D transformer-based models (nnFormer [29], TransBTS [27], UNETR [7])
and 3D self-supervised methods (Relative 3D patch location(3D-RPL) [23], 3D
Jigsaw puzzle Solving (3D-Jig) [23]) on 3 brain MRI segmentation tasks.

As Table[2]shows, on Brats 2021 dataset our method achieves the Dice scores
of 94.03%, 90.29%, 86.76% and the HD95 of 3.61mm, 3.78mm and 10.25mm on
WT, TC, ET. Compared to transformer-based methods, our method achieves
significantly better performance with both metrics. Specifically, our approach
outperforms TransBTS [27] and nnFormer [29] by more than 7% and 4% Dice on
ET respectively. Besides, our method shows more competitive results than other
SSL methods using the same image segmentation network. For ET category, our
method obtains 3.46mm and 1.54mm lower in HD95 than 3D-RPL and 3D-Jig.

® https://wmh.isi.uu.nl/data/
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Table 3: Comparison on IBSR dataset and WMH dataset.

Task IBSR WMH

Metric Dice(%)1 HD95(mm)| Dice(%)t HD95(mm)J
Anatomy CSF GM WM CSF GM WM WMH WMH
nnFormer [29] 87.31 93.81 92.12 1.52 1.52 1.21 78.04 2.81
TransBTS [27] 81.42 93.91 92.17 7.84 1.54 1.40 78.81 2.91
UNETR [7] 86.75 93.49 91.86 1.64 1.74 1.48 77.99 3.53
3D-RPL [23] 86.63 93.85 92.50 1.83 1.54 1.29 78.63 3.06
3D-Jig [23] 86.93 93.57 92.11 2.00 1.74 1.44 77.86 3.36
Ours 87.63 93.91 9244 1.46 1.54 1.33 78.99 2.73

The visual comparisons are shown in Fig. @] Our method does predict the ET
region (blue) more accurately. As Table [3| shows, on IBSR dataset our method
displays the highest Dice on CSF & GM, and obtains the lowest HD95 on CSF.
On WMH dataset, the proposed method performs the best on both metrics.
These results show that the model weights pre-trained by our method can be
transferred to a wide range of datasets and help achieve the state-of-the-art
performance.

Table 4: Ablation study on BraTS 2021. SSL denotes the 3D Masked Autoen-
coder (MAE) SSL method. A-SSL is the MAE method with our AR-Loss.

Metric Dice(%)1 HD95(mm)|}

Anatomy WT TC ET WT TC ET
Baseline 93.75 89.76 84.98 3.93 4.09 13.93
w/ SSL 94.02 90.28 86.25 4.01 4.06 13.44
w/ A-SSL 93.95 90.24 86.38 3.84 3.79 11.69
w/ SPE 93.90 90.15 85.86 3.69 3.82 11.59
w/ SPE&SSL 93.85 90.04 86.83 3.64 3.84 11.59

w/ ASA (Ours) 94.03 90.29 86.76 3.61 3.78 10.25

Ablation Analysis. We verify the strength of the attentive reconstuction loss
(AR-Loss), the SPE, and our overall ASA framework on BraTS 2021, as shown
in Table 4l ‘Baseline’ denotes the SW-ViT based segmentation network (see
Fig. trained from scratch. ‘w/ SSL’ denotes training the segmentation net-
work with the model weights pre-trained by a 3D Masked Autoencoder (MAE)
SSL method [8]. ‘A-SSL’ denotes the MAE method with the proposed AR-Loss.
As shown as the first half of Table 4] the A-SSL method produces more accu-
rate segmentation results than the competitor SSL at HD95 metric. Especially,
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on ET the HD95 of using A-SSL is nearly 2mm lower than that of using the
SSL method. Note that HD95 measures the distance between the point sets of
two boundaries. The above results show that the proposed AR-Loss can encour-
age the encoder to learn better representations for boundary information. ‘w/
SPE’ denotes applying the SPE to the train-from-scratch Baseline. ‘w/ SPE’ ob-
tains 0.9% higher in Dice and 2.3mm lower in HD95 than ‘Baseline’. ‘w/ ASA’
denotes using our overall method with the loss and SPE. By comparing ASA
with A-SSL, the SPE can further slightly improve A-SSL by 1.4mm HD95 on
ET. These results suggest that our proposed encoding can help the ViT-based
encoder understand symmetric structures and harvest discriminative features.

4 Conclusion

In this paper, we propose a novel self-supervised learning architecture for 3D
medical images. The proposed framework contains two key components, the
symmetric position encoding and the attentive reconstruction loss. The encod-
ing can benefit feature learning for symmetric structures and the attentive loss
emphasizes informative image regions for reconstruction-based SSL. Both tech-
niques can improve the generalization of trained models. Extensive experiments
are conducted on three public brain MRI datasets. The results suggest that
our method can achieve competitive performance with the state-of-the-art SSL
methods and medical image segmentation models.
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