Skip to main content

Denoising for Relaxing: Unsupervised Domain Adaptive Fundus Image Segmentation Without Source Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Recently, unsupervised domain adaptation (UDA) has been actively explored for multi-site fundus image segmentation with domain discrepancy. Despite relaxing the requirement of target labels, typical UDA still requires the labeled source data to achieve distribution alignment during adaptation. Unfortunately, due to privacy concerns, the vendor side often cannot provide the source data to the targeted client side in clinical practice, making the adaptation more challenging. To address this, in this work, we present a novel uncertainty-rectified denoising-for-relaxing (U-D4R) framework, aiming at completely relaxing the source data and effectively adapting the pretrained source model to the target domain. Considering the unreliable source model predictions on the target domain, we first present an adaptive class-dependent threshold strategy as the coarse denoising process to generate the pseudo labels. Then, the uncertainty-rectified label soft correction is introduced for fine denoising by taking advantage of estimating the joint distribution matrix between the observed and latent labels. Extensive experiments on cross-domain fundus image segmentation showed that our approach significantly outperforms the state-of-the-art source-free methods and encouragingly achieves comparable or even better performances over the leading source-dependent methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1988)

    Google Scholar 

  2. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48

    Chapter  Google Scholar 

  3. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

    Chapter  Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 801–818 (2018)

    Google Scholar 

  5. Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neural networks trained with noisy labels. In: International Conference on Machine Learning, pp. 1062–1070. PMLR (2019)

    Google Scholar 

  6. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 973–978. Lawrence Erlbaum Associates Ltd (2001)

    Google Scholar 

  7. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)

    Article  Google Scholar 

  8. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: An open retinal image database for optic nerve evaluation. In: 24th International Symposium on Computer-Based Medical Systems, pp. 1–6. IEEE (2011)

    Google Scholar 

  9. Goel, P., Chen, L.: On the robustness of monte carlo dropout trained with noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2219–2228 (2021)

    Google Scholar 

  10. He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Self domain adapted network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 437–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_43

    Chapter  Google Scholar 

  11. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: International Conference on Information Processing in Medical Imaging, pp. 597–609. Springer (2017)

    Google Scholar 

  12. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  13. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  14. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning (2013)

    Google Scholar 

  15. Luo, W., Yang, M.: Semi-supervised semantic segmentation via strong-weak dual-branch network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 784–800. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_46

    Chapter  Google Scholar 

  16. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in dataset labels. J. Artifi. Intell. Res. 70, 1373–1411 (2021)

    Article  MathSciNet  Google Scholar 

  17. Orlando, J.I., et al.: Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Google Scholar 

  18. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. In: The International Conference on Learning Representations (2021)

    Google Scholar 

  19. Sivaswamy, J., Krishnadas, S., Chakravarty, A., Joshi, G., Tabish, A.S., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2(1), 1004 (2015)

    Google Scholar 

  20. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  21. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: The International Conference on Learning Representations (2020)

    Google Scholar 

  22. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  23. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  24. Wang, Z., Dai, Z., Póczos, B., Carbonell, J.: Characterizing and avoiding negative transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11293–11302 (2019)

    Google Scholar 

  25. Xu, Z., Lu, D., Luo, J., Wang, Y., Yan, J., Ma, K., Zheng, Y., Tong, R.K.y.: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation. IEEE Transactions on Medical Imaging (2022)

    Google Scholar 

  26. Xu, Z., Lu, D., Wang, Y., Luo, J., Jagadeesan, J., Ma, K., Zheng, Y., Li, X.: Noisy labels are treasure: Mean-teacher-assisted confident learning for hepatic vessel segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 3–13. Springer (2021)

    Google Scholar 

  27. Yu, S., Xiao, D., Frost, S., Kanagasingam, Y.: Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput. Med. Imaging Graph. 74, 61–71 (2019)

    Article  Google Scholar 

  28. Zhang, H., Zhang, Y., Jia, K., Zhang, L.: Unsupervised domain adaptation of black-box source models. arXiv preprint arXiv:2101.02839 (2021)

  29. Zhang, L., Tanno, R., Xu, M.C., Jacob, J., Ciccarelli, O., Barkhof, F., C. Alexander, D.: Disentangling human error from the ground truth in segmentation of medical images. Advances in Neural Information Processing Systems (2020)

    Google Scholar 

Download references

Acknowledgement

This research was done with Tencent Healthcare (Shenzhen) Co., LTD and Tencent Jarvis Lab and supported by General Research Fund from Research Grant Council of Hong Kong (No. 14205419) and the Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project (No. 2020AAA0104100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Kai-yu Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z. et al. (2022). Denoising for Relaxing: Unsupervised Domain Adaptive Fundus Image Segmentation Without Source Data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics