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Abstract. Interactive image segmentation has been widely applied to obtain high-
quality voxel-level labels for medical images. The recent success of Transform-
ers on various vision tasks has paved the road for developing Transformer-based
interactive image segmentation approaches. However, these approaches remain
unexplored and, in particular, have not been developed for 3D medical image seg-
mentation. To fill this research gap, we investigate Transformer-based interactive
image segmentation and its application to 3D medical images. This is a nontrivial
task due to two main challenges: 1) limited memory for computationally inef-
ficient Transformers and 2) limited labels for 3D medical images. To tackle the
first challenge, we propose iSegFormer, a memory-efficient Transformer that
combines a Swin Transformer with a lightweight multilayer perceptron (MLP)
decoder. To address the second challenge, we pretrain i SegFormer on large
amount of unlabeled datasets and then finetune it with only a limited number of
segmented 2D slices. We further propagate the 2D segmentations obtained by
iSegFormer to unsegmented slices in 3D images using a pre-existing segmen-
tation propagation model pretrained on videos. We evaluate i SegFormer on
the public OAI-ZIB dataset for interactive knee cartilage segmentation. Evalua-
tion results show that i SegFormer outperforms its convolutional neural net-
work (CNN) counterparts on interactive 2D knee cartilage segmentation, with
competitive computational efficiency. When propagating the 2D interactive seg-
mentations of 5 slices to other unprocessed slices within the same 3D volume, we
achieve 82.2% Dice score for 3D knee cartilage segmentation. Code is available
at https://github.com/uncbiag/iSegFormer.

1 Introduction

Deep learning-based approaches for semantic and instance segmentation have achieved
tremendous success for medical images [1,2]. However, these approaches are data hun-
gry and heavily rely on the availability of large-scale voxel-level segmentations, which
to obtain requires significant labor, time, and expertise [3]. Interactive image segmen-
tation, which aims to extract image objects using limited human interactions, is an ef-
ficient way to obtain these segmentations [4]. Hence, significant work is ongoing to
explore interactive segmentation approaches [4-6].

Existing state-of-the-art interactive segmentation methods are all CNN-based, lever-
aging the good representation ability of CNNs [0, 7]. Although these CNN-based meth-
ods have achieved excellent performance, they suffer from limited receptive fields and
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cannot learn global and long-range semantic information well due to the inductive bias
of locality and weight sharing [8]. Several techniques have been proposed to address
these problems, such as atrous convolutional layers [9] and non-local blocks [10]. A re-
cent research direction is to replace CNN with vision Transformer (ViT), which can nat-
urally capture long-range dependencies through the self-attention mechanism [1 1, 12].
Following this direction, various vision Transformers have been proposed for medical
image segmentation [13], paving the road for developing Transformer-based interactive
image segmentation approaches. However, these approaches remain unexplored and, in
particular, have not been developed for 3D medical images.

In this work, we aim to fill this research gap by investigating Transformer-based in-
teractive image segmentation and its application to 3D medical images. This is a chal-
lenging task due to: 1) limited memory for computationally inefficient Transformers
and 2) limited labels for 3D medical images. To tackle the first challenge, we propose
iSegFormer, a memory-efficient Transformer that combines a Swin Transformer
with a lightweight multilayer perceptron (MLP) decoder. With the efficient Swin Trans-
former blocks for hierarchical self-attention and the simple MLP decoder for aggre-
gating both local and global attention, 1 SegFormer learns powerful representations
while achieving high computational efficiencies. To address the second challenge, we
pretrain i SegFormer on large amount of unlabeled datasets and then finetune it with
only a limited number of segmented 2D slices. To extend i SegFormer to 3D interac-
tive segmentation, we further combine it with a segmentation propagation module that
propagates segmented 2D slices to unlabeled ones in the same image volume. When
the propagated segmentations are not as desired, the user can refine them and start a
new round of propagation if necessary. Specifically, we combine iSegFormer with
STCN [14], which achieves state-of-the-art results on interactive video object segmen-
tation. We use a pretrained STCN model without finetuning on medical images.

We evaluate i SegFormer on the public OAI-ZIB dataset for interactive knee car-
tilage segmentation. Evaluation results show that 1 SegFormer outperforms its con-
volutional neural network (CNN) counterparts on interactive 2D knee cartilage seg-
mentation, with competitive computational efficiency. When propagating 2D interac-
tive segmentation of 5 slices to other unprocessed slices within the same 3D volume,
the propagation model achieves a Dice score of 82.2% for 3D knee cartilage segmenta-
tion. Finally, we show that 1 SegFormer combined with the segmentation propagation
model results in an efficient framework for interactive 3D medical image segmentation.

Our contributions are as follows:

1) We propose i SegFormer, a memory-efficient Transformer that combines a Swin
Transformer with a lightweight MLP decoder, for interactive image segmentation.

2) iSegFormer outperforms its CNN counterparts for interactive 2D knee cartilage
segmentation on the OAI-ZIB dataset with comparable computational efficiency
with CNNs. To the best of our knowledge, i SegFormer is the first Transformer-
based approach for interactive medical image segmentation.

3) We further show that i SegFormer can be easily extended to interactive 3D med-
ical image segmentation by combining it with a pre-existing segmentation propa-
gation model trained on videos.
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2 Related Work

Interactive Medical Image Segmentation Existing interactive segmentation meth-
ods for medical images are all CNN-based [15—18], partially inspired by the seminal
work [4]. MIDeepSeg [ 8] proposes a click-based approach that encodes foreground
and background clicks through Gaussian-smoothed maps, which serve as the input
to the CNN encoder-decoder. Recently, MONAI Label [15] proposes an open-source
framework for CNN-based interactive segmentation of 3D medical images, which con-
sists of both click-based and scribbles-based interactive segmentation algorithms. In this
work, we are interested in Transformer-based interactive segmentation, which has not
been well-explored, especially for medical images. Given the recent success of vision
Transformers for automatic medical image segmentation [19], it is a natural extension
for applying Transformers to interactive medical image segmentation. Specifically, we
apply to the challenging knee cartilage segmentation from MR images [20].

Vision Transformers The vision Transformer (ViT) [21] first shows that a pure Trans-
former can achieve state-of-the-art performance for image classification. Pyramid vi-
sion Transformer [22] further shows that ViT can also achieve comparable performance
with CNNs in dense prediction tasks. SegFormer [12] proposes an efficient segmen-
tation approach that combines a hierarchically structured Transformer encoder with a
light-weight decoder using MLPs, demonstrating the state-of-the-art segmentation per-
formance compared with CNNs. The Swin Transformer [23] is a breakthrough that
shows the superiority of hierarchical vision Transformer over CNN as a general vi-
sion backbone. Meanwhile, different ViTs have also been proposed in automatic med-
ical image segmentation [13,24,25]. Among these methods, Swin-Unet [13] and UT-
Net [25] are “U-shaped” networks inspired by Unets [26]. Comparing with these meth-
ods, 1 SegFormer is more efficient considering its efficient Swin Transformer encoder
and light-wighted MLP decoder.

Interactive Video Object Segmentation (iVOS) iVOS aims at extracting high-quality
segmentation masks of a target video object through two modules: a 2D interactive seg-
mentation module and a segmentation propagation module [27, 28]. MiVOS [28] de-
couples the two modules and train them independently. During inference, MiVOS first
interactively segments one or several frames in a video, followed by propagating the
segmented frames to the unsegmented ones. STCN [ 14] further improves the segmenta-
tion propagation module in MiVOS by directly encoding the query and memory frames
without re-encoding the mask features for every object. Inspired by the observation that
iVOS pipeline can be directly applied to 3D medical images, we extend i SegFormer
to interactive 3D medical image segmentation by combining it with an existing STCN
model trained on videos, leading to a very promissing results even without fine-tuning.

3 Method

The proposed iSegFormer is a Transformer-based interactive 2D image segmenta-
tion approach that combines a Swin Transformer with a lightweight MLP decoder. As
shown in Fig. 1, it can be easily extended to a 3D interactive segmentation approach
by combining it with a segmentation propagation module (i.e., STCN [14]). This 3D
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interactive segmentation approach consists of an i SegFormer for obtaining 2D seg-
mentation from user interactions and a segmentation propagation module that prop-
agates segmented slices to unsegmented ones, resulting in a 3D segmentation. If the
propagated segmentation results are not desired, the user can refine them with further
interactions and start a new round of propagation if necessary.
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Fig. 1: Tllustration of iSegFormer for interactive 3D medical image segmentation.
Initially, the user selects and interactively annotates one slice (i.e., the user clicks on
points) to produce a segmentation, followed by propagating the segmented slice to the
unsegmented ones. The 1 SegFormer architecture is shown at the bottom. The output
of i SegFormer will be upsampled to the orignal image size.

3.1 Network Architecture of iSegFormer

The network architecture of 1 SegFormer is shown in Fig. | (bottom). It uses a Swin
Transformer as the segmentation backbone and two light-weight MLP layers as the de-
coder to produce segmentation. Specifically, there are four Swin Transformer blocks
for hierarchical self-attention and a simple MLP decoder that first aggregates both local
and global attention and then produces the segmentation as the output. The input of
iSegFormer is the concatenation of image and clicks encoding map (introduced in
Sec. 3.2). Since we want to make use of existing pretrained Swin Transformer models
on ImageNet-21k [29], we do not change the number of input channels of the Swin
Transformer blocks. To achieve this, we use element-wise addition instead of concate-
nation for merging image features and clicks encoding features after the patch embed-
ding layers, which are linear projection layers that produce patch embeddings for self-
attention. Note that there are two separate patch embedding layers in i SegFormer
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(one for the input image and the other for the clicks encoding map), though Fig. 1 only
shows one for brevity. The clicks embedding is essential for extending a segmentation
model to an interactive segmentation model as it transforms user’s interactions from
clicks to feature maps that can be fed into the network. For medical images which typi-
cally only have one gray channel, we simply replicate the gray channel to RGB format.

3.2 Clicks Encoding and Simulation

We use clicks as the interaction mode due to their simplicity. Clicks can be either pos-
itive or negative: positive clicks indicate that particular points should be included in
the segmentation, and negative clicks indicate that particular points should not be in-
cluded in the segmentation. We encode positive and negative clicks from coordinates
to a 2-channel feature map with the same spatial size with the input image, following
the strategy used in [30]. The clicks encoding map will be fed into the network along
with the input image, as shown in Fig. 1 (bottom). During training and inference, we
automatically simulate clicks based on the ground truth and current predicted segmen-
tation for fast training and evaluation. A positive click is generated in the center of the
false negative region in the predicted segmentation, and a negative click is generated
in the center of the false positive region in the predicted segmentation. During training,
we add random perturbations for the simulated clicks to increase robustness, as adopted
in [6]. During inference, we remove the randomness for determinstic evaluation. Note
that clicks simulation requires the ground truth, and simulated clicks may be different
from clicks generated by human evaluation. Therefore, we present in the supplementary
materials some qualitative results obtained by human evaluation.

3.3 Training and Inference Details

For fair comparison with RITM [6], we adopt most of the hyper-parameters used in
RITM for training and inference. The i SegFormer models are trained in a class-
agnostic binary segmentation task with the normalized focal loss function (NFL) [31].
We randomly crop the image to the size of 320 x 480 for training. We adopt the same
data augmentation techniques with RITM [6] including random scaling and resizing.
We implement i SegFormer using Pytorch with Adam optimizer. All experiments are
conducted on a NVIDIA A6000 GPU. All models are trained 55 epochs with batch size
as 32 (except the SegFormer and HRFormer models in Fig. 3). More details please refer
to our codebase.

3.4 Extending to Interactive 3D Image Segmentation

iSegFormer can be easily extended to a 3D interactive segmentation approach by
combining it with a segmentation propagation module (i.e., STCN [14]). Since this is
not our main contribution, we introduce the details in the appendix.
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4 Experiments

Datasets The OAI-ZIB [32] dataset consists of 507 3D MR images with segmentations
for femur, tibia, tibial cartilage, and femoral cartilage. In this work, we only consider
cartilage segmentation. Each 3D image contains 160 slices of size of 384 x384. We split
the dataset randomly into 407 images for training, 50 images for validation, and 50 im-
ages for testing. Since we are interested in the problem setting where the segmentations
for the 3D images are limited, we only use three segmented slices of each image in the
training and validation sets for developing iSegFormer, resulting in 1521 training
slices, 150 validation slices, and 150 testing slices. The three slices are selected at a
fixed interval (ie., slice 40, 80, and 120). We also use 9 other public datasets in our
cross-domain evaluation experiments. Please refer to Sec. 4.1 for details.

Evaluation Metrics We use Number of Clicks (NoC) to measure the number of clicks
required to achieve a predefined Intersection over Union (IoU) between predicted and
ground truth segmentations. For example, NoC@85% measures the number of clicks
required to obtain 85% IoU. We use an automatic evaluation procedure to simulate
clicks during inference and report the quantitative results, following the practices used
in [6]. We also perform a human evaluation for a qualitative study. For measuring the 3D
segmentation results, we use the Dice Similarity Coefficient (DSC), sensitivity (SEN),
and the positive predictive value (PPV).

4.1 Results of Interactive 2D Image Segmentation

We compare iSegFormer with RITM [6], the state-of-the-art CNN-based approach
for interactive 2D femoral and tibial cartilage segmentation. Both RITM and i SegFormer
are implemented on two segmentation backbones. For RITM, the backbones are UNet [33]
and HRNet32 [34]. For i SegFormer, the backbones are Swin Transformer’s base and
large models. For fair comparison, all the models are trained on the OAI-ZIB training

set under the same training settings.

Model Mem (M) SPC (ms) NoC@80% NoC@85% NoC@90% >20@85 >20@90
RITM-UNet 2680 56 9.74 (8.76) 15.28 (7.39) 17.79 (3.54) 102 144
RITM-HR32 2763 82 8.47 (8.12) 14.48 (7.82) 18.85(2.47) 94 138
Ours-Swin-B 2797 64 7.25(7.74) 11.67 (8.19) 17.03 (6.05) 68 115
Ours-Swin-L 3755 89 6.91 (7.59) 11.77 (8.26) 17.57 (5.45) 70 123

Table 1: Evaluation on the OAI-ZIB test set for femoral and tibial cartilage segmenta-
tion. “Mem” denotes the GPU memory consumption for inference. “SPC” represents
second per click. “>20@85” measures the number of difficult cases that require more
than 20 clicks to achieve 85% IoU. We report mean and standard deviation for the NoC
metrics.
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Tab. 1 reports the comparison results for tibial and femoral cartilage segmentation
on the 150 slices of the OAI-ZIB testing set. The results show that 1 SegFormer out-
performs its CNN counterparts with very competitive speed and GPU memory con-
sumption, demonstrating the effectiveness and efficiency of i SegFormer for interac-
tive segmentation.

Comparison with Other Transformer Backbones To further demonstrate the effi-
ciency of 1SegFormer, we also implemented 1 SegFormer using two recently pro-
posed Transformer backbones for segmentation: HRFormer [ 1] and SegFormer [12].
As shown in Tab 3, our proposed Swin Transformer-based segmentation backbone is
much more memory-efficient than the other Transformer-based backbones.

Cross-Domain Evaluation We have shown that i SegFormer outperforms CNNs
when trained with only 1,221 labeled 2D slices (labeling such a dataset amounts to
labeling 8 3D images with 160 slices). However, in many applications no segmented
slices are available, for example, when studying new medical image datasets. There-
fore, it is important to generalize the trained interactive segmentation models to un-
seen objects or objects in different domains. In this cross-domain evaluation, we train
iSegFormer and RITM models on the COCO+LVIS [35] dataset, which contains
millions of high-quality labels for natural images. Then we test the model on 5 natu-
ral image datasets (GrabCut, Berkeley, DAVIS, PascalVOC, and SBD) and 3 medical
image datasets (ssTEM, BraTS, and OAI-ZIB).

B Swin-Base (Ours) W Swin-Large (Ours) M HRNet32 (RITM)
20

GrabCut Berkeley DAVIS PascalVOC SBD ssTEM BraTS OAI-ZIB

Fig. 2: Cross-domain evaluation results. Models are trained on the COCO+LVIS dataset
and tested on 5 natural datasets (GrabCut, Berkeley, DAVIS, PascalVOC, and SBD) and
3 medical image datasets (sSTEM, BraTS, and OAI-ZIB).

The results are shown in Fig. 2. Although there is still a significant performance
gap between in-domain and out-of-domain evaluations, both CNN and Transformer
models generalize reasonably well to medical image datasets. Note that our models do
not outperform the CNN counterpart in this experiment. We argue that HRNet is the best
performing model in RITM with well-tuned hyper parameters, while we adopt most of
their hyper parameters for Transformers and spend little effort in tuning them.
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4.2 Results on Segmentation Propagation

Given the interactively segmented 2D slices obtained by i SegFormer, we now inter-
ested in 3D segmentation via a segmentation propagation model released by STCN [14].
The results in Tab. 2 show that with more segmented slices, the propagation results get
better. With only 5 segmented slices, it achieves a Dice score of 82.2% for femoral car-
tilage segmentation. This is a very promising result considering that the segmentation
propagation model was not trained on the medical images. We hope this preliminary
experiment would attract more research effort in transferring knowledge from video
domain to the medical imaging domain.

#Slices DSC (%) SEN (%) PPV (%) 1oU (%) Backbone Params (M) Mem SPC
1 55.1 61.7 553 38.0 HRNet32 41 2763M 82ms
3 78.7 85.8 73.1 64.9 SegFormer-B5 28 >5G >0.2s
5 82.2 87.1 77.9 70.6 HRFormer-B 50 >5G >0.2s
10 85.1 88.1 88.3 74.1 Swin-B 88 2797M 64ms
Table 2: Femoral cartilage segmenta- Swin-L 197 3755M 89ms
tion using 1, 3, 5, or 10 segmented Table 3: Memory and speed compar-
slices for propagation. The propagation ison between different segmentation
model is trained on video. backbones.

4.3 Ablation Study

We demonstrated in Sec. 4.1 that 1 SegFormer performed better than its CNN coun-
terparts. Other than the architecture difference, the biggest difference comes from the
pretraining settings. In Sec. 4.1, our 1 SegFormer models are pretrained on ImageNet-
21k, while the CNN models have two pretraining steps: first pretrained on ImageNet-
21k and then finetuned on the COCO+LVIS dataset. In this study, we adopt different
pretrain settings for a more fair comparison between Transformer and CNN models.
Note that the pre-training task can be either classification (Cls) or interactive segmen-
tation (iSeg). As shown in Tab. 4, pretraining on Image21k is essential for the success
of iSegFormer. More details are included in the supplementary materials.

5 Conclusion

We proposed iSegFormer, a memory-efficient Transformer that combined a Swin
Transformer with a lightweight multilayer perceptron (MLP) decoder. iSegFormer
outperformed its CNN counterparts on the interactive 2D knee cartilage segmentation
while achieving comparable computational efficiency with CNNs. We further extended
iSegFormer for interactive 3D knee cartilage segmentation by combining it with a
pre-existing segmentation propagation model trained on videos, achieving promissing
results even without finetuning the segmentation propagation model.
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Pretrain Pretrain  Fine Swin-B Swin-L HRNet32
Dataset Task Tune NoC@80 NoC@85 NoC@80 NoC@85 NoC@80 NoC@85

N/A N/A 19.69 19.99 18.85 19.91 15.47 18.99
ImageNet-21K  Cls 7.25 11.67 6.91 11.77 17.19 19.61
COCO+LVIS  iSeg 15.48 17.19 15.09 17.45 14.58 16.93
COCO+LVIS  iSeg 12.11 15.73 9.00 13.29 8.47 14.48
OAI (w/o GT) iSeg 18.49 19.65 18.89 19.72 16.35 18.48
OAI (w/o GT) 1iSeg 12.67 15.87 13.01 16.41 7.93 12.81

Table 4: Ablation study on pretraining strategies. The pretraining task can be either
classification (Cls) or interactive segmentation (iSeg).
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