Skip to main content

Survival Prediction of Brain Cancer with Incomplete Radiology, Pathology, Genomic, and Demographic Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Integrating cross-department multi-modal data (e.g., radiology, pathology, genomic, and demographic data) is ubiquitous in brain cancer diagnosis and survival prediction. To date, such an integration is typically conducted by human physicians (and panels of experts), which can be subjective and semi-quantitative. Recent advances in multi-modal deep learning, however, have opened a door to leverage such a process in a more objective and quantitative manner. Unfortunately, the prior arts of using four modalities on brain cancer survival prediction are limited by a “complete modalities” setting (i.e., with all modalities available). Thus, there are still open questions on how to effectively predict brain cancer survival from incomplete radiology, pathology, genomic, and demographic data (e.g., one or more modalities might not be collected for a patient). For instance, should we use both complete and incomplete data, and more importantly, how do we use such data? To answer the preceding questions, we generalize the multi-modal learning on cross-department multi-modal data to a missing data setting. Our contribution is three-fold: 1) We introduce a multi-modal learning with missing data (MMD) pipeline with competitive performance and less hardware consumption; 2) We extend multi-modal learning on radiology, pathology, genomic, and demographic data into missing data scenarios; 3) A large-scale public dataset (with 962 patients) is collected to systematically evaluate glioma tumor survival prediction using four modalities. The proposed method improved the C-index of survival prediction from 0.7624 to 0.8053.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pedano, N., et al: Radiology data from the cancer genome atlas low grade glioma [tcga-lgg] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK

  2. Scarpace, L., et al: Radiology data from the cancer genome atlas glioblastoma multiforme [tcga-gbm] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9

  3. Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(1), 629–681 (2017)

    MATH  Google Scholar 

  4. Bae, S., et al.: Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289(3), 797–806 (2018)

    Article  Google Scholar 

  5. Bakas, S., et al.: Advancing The Cancer Genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  7. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  8. Beig, N., et al.: Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin. Cancer Res. 26(8), 1866–1876 (2020)

    Article  Google Scholar 

  9. Beig, N., et al.: Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma. Neuro Oncol. 23(2), 251–263 (2021)

    Article  Google Scholar 

  10. Braman, N., Gordon, J.W.H., Goossens, E.T., Willis, C., Stumpe, M.C., Venkataraman, J.: Deep orthogonal fusion: multimodal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 667–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_64

    Chapter  Google Scholar 

  11. Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14), i446–i454 (2019)

    Article  Google Scholar 

  12. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging, 757–770 (2020)

    Google Scholar 

  13. Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  14. Ghosal, S., et al.: G-MIND: an end-to-end multimodal imaging-genetics framework for biomarker identification and disease classification. In: Medical Imaging 2021: Image Processing, vol. 11596, p. 115960C. International Society for Optics and Photonics (2021)

    Google Scholar 

  15. Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit. Med. 3(1), 1–9 (2020)

    Article  Google Scholar 

  16. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation, vol. 1, pp. 1–8. arXiv preprint arXiv:1904.08128 (2019)

  17. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Lezama, J., Qiu, Q., Musé, P., Sapiro, G.: OLE: orthogonal low-rank embedding-a plug and play geometric loss for deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8109–8118 (2018)

    Google Scholar 

  19. Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  20. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  21. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  22. Neverova, N., Wolf, C., Taylor, G., Nebout, F.: ModDrop: adaptive multi-modal gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1692–1706 (2015)

    Article  Google Scholar 

  23. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  24. Schneider, L., et al.: Integration of deep learning-based image analysis and genomic data in cancer pathology: a systematic review. Eur. J. Cancer 160, 80–91 (2022)

    Article  Google Scholar 

  25. Wang, Z., Li, R., Wang, M., Li, A.: GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction. Bioinformatics 37(18), 2963–2970 (2021)

    Article  Google Scholar 

  26. Yap, J., Yolland, W., Tschandl, P.: Multimodal skin lesion classification using deep learning. Exp. Dermatol. 27(11), 1261–1267 (2018)

    Article  Google Scholar 

  27. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250 (2017)

Download references

Acknowledgements

This work is supported by the Leona M. and Harry B. Helmsley Charitable Trust grant G-1903-03793, NSF CAREER 1452485. This work is in part based upon data generated by the TCGA Research Network: https://www-cancer-gov.proxy.library.vanderbilt.edu/tcga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Huo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 32 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, C. et al. (2022). Survival Prediction of Brain Cancer with Incomplete Radiology, Pathology, Genomic, and Demographic Data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics