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Abstract. In ophthalmological imaging, multiple imaging systems, such
as color fundus, infrared, fluorescein angiography, optical coherence to-
mography (OCT) or OCT angiography, are often involved to make a di-
agnosis of retinal disease. Multi-modal retinal registration techniques can
assist ophthalmologists by providing a pixel-based comparison of aligned
vessel structures in images from different modalities or acquisition times.
To this end, we propose an end-to-end trainable deep learning method
for multi-modal retinal image registration. Our method extracts convo-
lutional features from the vessel structure for keypoint detection and
description and uses a graph neural network for feature matching. The
keypoint detection and description network and graph neural network are
jointly trained in a self-supervised manner using synthetic multi-modal
image pairs and are guided by synthetically sampled ground truth ho-
mographies. Our method demonstrates higher registration accuracy as
competing methods for our synthetic retinal dataset and generalizes well
for our real macula dataset and a public fundus dataset.

Keywords: Multi-modal retinal image registration · Convolutional neu-
ral networks · Graph neural networks.

1 Introduction

For the diagnosis of retinal disease, such as diabetic retinopathy, glaucoma, or
age-related macular degeneration, and for the long-term monitoring of their pro-
gression, ophthalmological imaging is essential. Images are recorded over varying
time periods using different multi-modal imaging systems, such as color fundus
(CF), infrared (IR), fluorescein angiography (FA), or the more recent optical
coherence tomography (OCT) and OCT angiography (OCTA). For the compar-
ison and fusion of the information from different images by the ophthalmologists,
multi-modal image registration is required to accurately align the vessel struc-
tures in the images.

Multi-modal retinal registration methods can be summarized into global
methods to predict an affine transform or a homography and local methods
that estimate a non-rigid displacement field. In this work, we concentrate on
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Fig. 1: Our keypoint-based vessel structure aligning network (KPVSA-Net) for
multi-modal retinal registration uses a CNN to extract cross-modal features of
the vessel structures in both images and a graph neural network for descriptor
matching. Our method is end-to-end and self-supervisedly trained by using syn-
thetically augmented image pairs. During inference, the homography is predicted
based on the matches and scores using weighted direct linear transform (DLT).

feature-based methods that apply keypoint detection, description, matching, and
computation of the global transform. Classical methods estimate e.g . the par-
tial intensity invariant feature descriptor (PIIFD) [5] and Harris corner detec-
tor. This was extended by [24] using speed up robust feature (SURF) detector,
PIIFD, and robust point matching, called SURF–PIIFD–RPM. With the use
of deep learning, some steps or even all steps are replaced by neural networks.
The retinal method DeepSPA [12] uses a convolutional neural network (CNN)
to classify patches of vessel junctions based on a step pattern representation.
The keypoint detection and description network RetinaCraquelureNet [19] is
trained on small multi-modal retinal image patches centered at vessel bifurca-
tions and uses mutual nearest neighbor matching and random sample consensus
(RANSAC) [7] for homography estimation. In GLAMpoints [22], homography
guided self-supervised learning is applied to train a UNet [17] for keypoint
detection combined with RootSIFT [1] descriptors for retinal image data. The
weakly supervised method by Wang et al . [25] sequentially trains a vessel seg-
mentation network using style transfer and the mean phase image as guidance,
the self-supervised SuperPoint [6] network, and an outlier network using con-
text normalization [26], which they adapt for the homography estimation task.
End-to-end networks are often designed to directly compute the parameters of
the transform. To predict affine and non-rigid transforms, there is for instance
the image and spatial transformer networks (ISTN) for structure-guided image
registration that learns a representation of the segmentation maps during train-
ing [13]. An approach [2] on spatial transformers and CycleGANs [28] for multi-
modal image registration uses cross-modality translation between the modalities
to employ a mono-modality metric.

In this paper, we propose an end-to-end deep learning method for multi-
modal retinal image registration, named Keypoint-based Vessel Structure Align-
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Fig. 2: Keypoint confidence heatmap (from low confidence blue to high confi-
dence red) without (middle left) and with (middle right) our novel self-supervised
keypoint and descriptor loss in combination with the differentiable keypoint re-
finement. The extracted keypoints (most right) of our multi-modal registration
method are color-coded based on their confidence (red is high).

ing Network (KPVSA-Net). We employ prior knowledge by extracting deep fea-
tures of the vessel structure using the keypoint detection and description network
RetinaCraquelureNet [19]. In contrast to vessel segmentation based methods, we
extract the features directly from multi-modal images to learn distinctive cross-
modal descriptors. We build an end-to-end network for feature extraction and
matching by extending RetinaCraquelureNet and combining it with the graph
neural network SuperGlue [18]. We jointly train both networks using a novel
self-supervised keypoint and descriptor loss and a self-supervised matching loss
guided by sampled homographies. We created a synthetically augmented dataset
by training an image translation technique to generate synthetic retinal images.
Our network incorporates and connects knowledge about the local and global
position, visual appearance, and context between keypoints showing high regis-
tration accuracy.

2 Methods

2.1 Synthetic Augmentations for Multi-modal Retinal Images

Our proposed method is trained end-to-end in a self-supervised manner guided
only by synthetically sampled ground truth homographies. To apply the self-
supervised technique to multi-modal images, we make use of unpaired image-to-
image translation using the cycle consistency [28]. For each modality combina-
tion, we train one CycleGAN [28] to augment the training dataset by generating
synthetic images of the other modalities. To train our registration method, we
sample random homographies on the fly to transform the second image. After-
wards, we crop both images at the same randomly selected position to a fixed
patch size and recalculate the homographies based on the new corner points.
We augment both patches independently with photometric augmentations such
as color jittering, Gaussian blurring, sharpening, Gaussian random noise, and
small random crops. Prior to warping, we jointly augment the full-size images
with geometric transformations such as horizontal and vertical flipping, rotation,
and elastic deformation by random noise.
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Fig. 3: Qualitative results for one IR-OCTA example.

2.2 Multi-modal Retinal Keypoint Detection and Description
Network

We employ and extend the fully-convolutional RetinaCraquelureNet [20,19] for
our end-to-end pipeline (see Fig. 1). The network architecture is composed of a
ResNet [9] backbone and a keypoint detection and description head. The key-
point detection head has two output channels (“vessel”, “background”), which
we reduce to only one channel to directly predict the keypoint confidence score.
We set the feature dimension of the description head to 256-D to reduce the
parameters for end-to-end learning. We pretrain the network from scratch us-
ing multi-modal retinal image patches centered at supervised keypoint positions
with a binary cross-entropy loss for keypoint detection and a cross-modal bidi-
rectional quadruplet descriptor loss [20,19].

Then, we fit the network into our pipeline. In order to directly use the output
of the detection head as keypoint confidence scores, we add a batch normalization
layer after the last 1× 1 convolutional layer and add a sigmoid activation after
the bicubic upsampling layer. With these modifications the predictions of the
detector are scaled to the range zero to one. Then, we apply non-maximum sup-
pression (NMS) to the keypoint confidence heatmap and extract the top Nmax

keypoints from the NMS heatmap [20,19]. This step is non-differentiable, there-
fore we apply a differentiable subpixel keypoint refinement (DKR) that allows
the gradients to flow back to the small regions around the keypoints. Inspired by
recent works [14,15,11,27], we extract 5×5 patches from the confidence heatmap
which are centered at the Nmax keypoint positions and compute for each patch
p the spatial softargmax of the normalized patch (p − sNMS)/t, where sNMS is
the value of the NMS score map and t the temperature for the softmax. The
refined keypoint positions are the sum of the initial coordinates and the soft
subpixel coordinates. The corresponding descriptors are linearly interpolated at
the refined keypoint coordinates [20].

Based on the idea of the bidirectional quadruplet descriptor loss (LDesc) [20],
we design a self-supervised keypoint and descriptor loss (LKD) that is guided
by ground truth homographies instead of labeled matching keypoint pairs as
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Table 1: Quantitative evaluation for our synthetic retina test dataset. Models
with * are fine-tuned on our synthetic augmented dataset.
Metrics Success rate for MHE (SRMHE) [%] ↑ MHE ↓ Dice ↑

ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 ε = 10 Mean±Std Mean±Std

Before Reg 0.0 0.0 0.0 0.0 0.0 0.0 78.10±36.44 .083±.04
UNet+RootSIFT 7.6 20.1 27.1 32.4 35.8 42.2 368.93±2739.36 .433±.34
GLAMpoints* 14.9 44.7 60.9 70.2 75.5 82.9 95.07±812.65 .639±.25
SuperPoint* 11.0 33.3 55.6 67.7 76.6 90.7 8.61±53.55 .709±.16
RCN (512-D) 13.7 43.1 57.8 65.4 69.0 73.2 107.70±1055.37 .596±.31
(SP+SG)* 35.2 74.4 91.6 96.4 98.3 99.5 1.84±4.48 .775±.11
(SP*+SG)* 39.9 79.5 92.9 97.4 99.1 99.7 1.49±1.50 .781±.10

RCN-D*+SG* 47.4 88.2 95.1 97.0 98.2 99.0 1.46±2.51 .783±.11
RCN-KD*+SG* 50.4 90.2 95.1 97.3 98.1 99.2 1.32±1.55 .783±.11
RCN-DK*-D*+SG* 55.1 89.9 96.1 97.9 98.7 99.4 1.29±2.13 .782±.11
KPVSA-Net 74.2 94.9 98.1 98.6 98.7 99.1 1.36±6.45 .789±.11

in [20]. Within the detected keypoints in both images, positive keypoint pairs
are automatically determined based on mutual nearest neighbor matching of the
keypoint coordinates whose reprojection error is smaller than a threshold τ . For
the positive descriptor pairs (anchor da and positive counterpart dp), the closest
non-matching descriptors in both directions are selected analogously to [20]:

LDesc(da,dp,du,dv) = max[0,m+D(da,dp)−D(da,du)]

+ max[0,m+D(dp,da)−D(dp,dv)],
(1)

where m is the margin, D(x, y) the Euclidean distance, du the closest negative
to da, and dv is the closest negative to dp. However, since this self-supervised
descriptor loss formulation depends on the number of matchable keypoints in
the images with a coordinate distance smaller than τ , it could encourage the
reduction of the number of positive pairs Np to minimize the loss. To account
for that and to refine the keypoint positions, we include a term into our loss
to also minimize the reprojection error of the coordinates of the positive pairs
(anchor xa, and warped coordinates of the positive counterpart x̂p) which is
weighted by β. This leads to our self-supervised keypoint and descriptor loss:

LKD(da,dp,du,dv,xa, x̂p) =
1

Np

Np∑
i

LDesc(dai,dpi,dui,dvi)

+
β

N2
p

Np∑
i

D(xai, x̂pi).

(2)

2.3 Keypoint Matching Using a Graph Convolutional Neural
Network

For keypoint matching, we incorporate the graph convolutional neural network
SuperGlue [18] into our method which consists of three building blocks, see Fig. 1.
The keypoint coordinates are encoded as high dimensional feature vectors using a
multilayer perceptron, and a joint representation is computed for the descriptors
and the encoded keypoints [18].
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Table 2: Quantitative evaluation for the IR-OCT-OCTA dataset. Models with *
are fine-tuned on our synthetic augmented dataset.

IR-OCT IR-OCTA OCT-OCTA All All

Metrics Success Rates (ME<=7, MAE<=10) [%] ↑ ME ↓ MAE ↓ Dice ↑
ME MAE ME MAE ME MAE ME MAE Mean±Std Mean±Std Mean±Std

Before Reg 0.0 0.0 0.0 0.0 30.0 26.7 10.0 8.9 123.89±79.25 128.59±79.65 .117±.13
Manual 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.95±0.73 3.13±1.12 .481±.09

UNet+RootSIFT 13.3 6.7 13.3 8.3 73.3 65.0 33.3 26.7 210.09±452.84 640.46±2166.14 .300±.22
GLAMpoints* 40.0 11.7 61.7 25.0 100.0 85.0 67.2 40.6 8.43±9.62 20.53±31.13 .456±.12
SuperPoint* 35.0 16.7 26.7 21.7 100.0 93.3 53.9 43.9 89.98±427.20 365.69±2292.21 .405±.18
RCN (512-D) 78.3 41.7 81.7 46.7 100.0 96.7 86.7 61.7 4.63±2.41 10.53±8.03 .534±.09
(SP+SG)* 86.7 80.0 80.0 78.3 100.0 100.0 88.9 86.1 19.14±111.81 66.99±611.31 .506±.15
(SP*+SG)* 100.0 90.0 93.3 88.3 100.0 100.0 97.8 92.8 3.85±2.46 7.08±5.64 .533±.10
KPVSA-Net 96.7 91.7 98.3 93.3 100.0 100.0 98.3 95.0 3.67±2.97 6.88±8.45 .542±.10

The attentional graph neural network (GNN) uses alternating self- and cross-
attention layers to learn a more distinctive feature representation. The nodes of
the graph are the keypoints’ representations of both images. The self-attention
layers connect the keypoints within the same image, while the cross-attention
layers connect a keypoint to all keypoints in the other image. Information is
propagated along both the self- and cross-edges via messages. At each layer the
keypoints’ representations for each image are updated by aggregation of the
messages using multi-head attention [23]. Lastly, a 1 × 1 convolutional layer is
used to obtain the final descriptors [18].

The optimal matching layer is used to compute the partial soft assignment
matrix P, which assigns for each keypoint at most one single keypoint in the
other image. Based on the score matrix of the similarity of the descriptors, P
is iteratively solved using the differentiable Sinkhorn algorithm [21]. To account
for unmatchable keypoints, a dustbin is added to the N ×M score matrix [18].
The negative log-likelihood of P is minimized [18]:

LSG(P,M, I,J ) = −κ
∑

(i,j)∈M

logPi,j −
∑
i∈I

logPi,N+1 −
∑
j∈J

logPM+1,j , (3)

where κ is the weight for the positive matches M, I denotes the unmatchable
keypoints of image II , and J the unmatchable keypoints of image IJ which are
all those whose reprojection errors are higher than τ . We compute the LSG and
the ground truth matches twice, once based on matching from image II to IJ
and once vice versa, i.e. the matching loss is the sum of both.

3 Experiments

3.1 Multi-modal Retinal Datasets

For our IR-OCT-OCTA retinal dataset, provided by the Department of Oph-
thalmology, FAU Erlangen-Nürnberg, the maculas of 46 controls were measured
by Spectralis OCT II, Heidelberg Engineering up to three times a day result-
ing in 134 images per modality and 402 images in total. The multi-modal image
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triplets consist of IR images (768×768) and en-face OCT and OCTA projections
of the SVP layer (Par off) of the macula (both 512× 512). We split the images
for each modality into training: 89, validation: 15, and test set: 30. Secondly, we
split the public color fundus (CF: 576 × 720 × 3) and fluorescein angiography
(FA: 576 × 720) dataset [8,4] that consists of 29 image pairs of controls and 30
pairs of patients with diabetic retinopathy into training: 35, validation: 10, and
test set: 14. For our synthetic dataset, we generate 1119 multi-modal pairs of
real and synthetic images for training, 205 for validation, and 386 for testing.
Due to our self-supervised training, we do not need any annotations, hence we
only annotated 6 control points per image for the test sets. OCT, OCTA, and
FA images are inverted for our experiments to depict all vessels in dark.

3.2 Implementation and Experimental Details

KPVSA-Net is implemented in PyTorch and we use the Kornia framework [16]
for data augmentation, homography estimation using weighted direct linear
transform (DLT), and image warping. To initialize both networks, we pretrain
our adapted version of RetinaCraquelureNet (RCN: 256-D) from scratch (back-
bone + detection head: learning rate of η = 1 · 10−3, 100 epochs; complete
network: η = 1 · 10−4, 25 epochs; for both: with early stopping and linear decay
of η to 0 starting at 10) and use the SuperGlue weights of the Outdoor dataset.
Then, we train KPVSA-Net end-to-end using Adam solver for 100 epochs with
η = 1 · 10−4 for SuperGlue and η = 1 · 10−6 for the detector and descriptor
heads of RCN (frozen ResNet backbone) and then decay η linearly to zero for
the next 400 epochs with early stopping and a batch size of 8. The keypoint and
descriptor loss and matching loss are equally weighted, m = 1, β = 300, t = 0.1,
κ = 0.45, τ = 3, training patch size of 384, Nmax = 512 (synthetic dataset) or
Nmax = 1024 (real datasets), and matching score threshold of 0.2 for DLT.

For the comparison, we used the original configuration of RetinaCraque-
lureNet (RCN: 512-D) [19] and we fine-tuned SuperPoint [6] (SP*) and GLAM-
points [22] with our synthetic multi-modal dataset by extending the training
code of [11,22]. Then, we jointly fine-tuned SuperGlue and the descriptors of
the pretrained SuperPoint model (SP+SG)* for 100 epochs using our synthetic
dataset and training strategy. Likewise, we jointly fine-tuned SuperGlue and
the SP* model (SP*+SG)*. For the feature-based comparison methods, we use
Nmax of 2000 or 4000 (synthetic/real), mutual nearest neighbor matching and
RANSAC [7] (reprojection error of 5) for homography estimation using OpenCV.
For vessel segmentation and Dice score computation, we trained a UNet with
synthetically augmented multi-modal images using CycleGANs based on the CF
images and manual segmentations of the HRF dataset [3,10]. The registration
success rate for the real datasets is computed for the mean Euclidean error
(ME) and maximum Euclidean error (MAE) of 6 manual target control points
and warped source control points using the predicted homography and an error
threshold ε. For the synthetic dataset, we compute the success rate of the mean
homography error (MHE) [6] for different ε based on warping the corner points
of the source image using the ground truth and the predicted homography.
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Table 3: Quantitative evaluation for the public CF-FA dataset. Models with *
are fine-tuned on our synthetic augmented dataset.
Metrics SRME [%] ↑ SRMAE [%] ↑ ME ↓ MAE ↓ Dice ↑

ε = 2 ε = 3 ε = 3 ε = 5 Mean±Std Mean±Std Mean±Std

Before Reg 0.0 0.0 0.0 0.0 52.12±42.26 61.07±42.17 .122±.03
Manual 100.0 100.0 92.9 100.0 0.73±0.34 1.24±0.71 .606±.08

UNet+RootSIFT 64.3 85.7 71.4 85.7 2.93±4.49 6.84±14.20 .643±.14
GLAMpoints* 25.0 64.3 21.4 57.1 3.34±2.36 6.42±5.21 .567±.11
SuperPoint* 71.4 85.7 46.4 78.6 1.85±0.72 3.41±1.38 .636±.09
RCN (512-D) 71.4 100.0 64.3 89.3 1.70±0.55 3.04±1.37 .658±.09
(SP+SG)* 85.7 100.0 71.4 100.0 1.56±0.51 2.58±0.85 .648±.10
(SP*+SG)* 92.9 100.0 85.7 100.0 1.55±0.46 2.53±0.86 .661±.09
KPVSA-Net 92.9 100.0 92.9 100.0 1.50±0.36 2.47±0.67 .659±.09

3.3 Results

The quantitative results of the synthetic dataset are summarized in Table 1.
Our KPVSA-Net shows the highest success rates for homography estimation for
low error thresholds and in total the highest Dice score of the registered images.
For error thresholds larger than 4, the two SuperPoint+SuperGlue variants show
comparable results. All SuperGlue-based methods achieve higher scores than the
feature-based methods that use RANSAC. The bottom rows of Table 1 show our
ablation study. First, RCN (256-D) with training only the descriptor head, with-
out keypoint refinement, and without our novel loss variant in combination with
SuperGlue (RCN-D*+SG*) already shows an improvement of 7.5 % compared
to (SP*+SG)* for ε <= 1. Enabling the keypoint detector and descriptor to
learn (RCN-KD*+SG*) improves further by 3 %, and using the differential key-
point refinement (DKR) (RCN-DK*-D*+SG*) achieves 5 % more, and finally
our full method KPVSA-Net additionally achieves 19 % plus for ε <= 1. The
high accuracy for low error thresholds could be seen as the effect of the combi-
nation of our novel loss and DKR that pulls matching keypoints and descriptors
closer together. The effect of both terms on the keypoint heatmap is visualized
in Fig. 2. The left heatmap of the frozen detector highlights the vessel structures.
Adding the single described steps only marginally change the visual appearance
of the heatmap. Our final model has a refining effect on the heatmap (right) by
thinning the high response area (red). Further, our loss also had a positive effect
on SuperGlue by speeding up the convergence of both losses.

The evaluation results for our real IR-OCT-OCTA dataset is shown in Table 2
and for the public dataset in Table 3. For the single multi-modal domain pairs,
the twice fine-tuned (SP*+SG)* model has a slightly higher success rate for
IR-OCT, but our method is slightly better for IR-OCTA and OCT-OCTA and
for the total dataset. Generally, the errors are a bit higher for the real dataset
and the best Dice score (ours) only has 54.2 % instead of 78.9 % for the synthetic
dataset, but good results are still achieved. Since there is no ground truth for the
real dataset, some inaccuracies come from the manual control points and also
due to small deformations in the vessels or motion artifacts. The registration task
for the CF-FA dataset is less complex, resulting in smaller ME and MAE for
all methods and relatively close results for RCN, (SP+SG)*, (SP*+SG)*, and
our method. We also tested the conventional method SURF+PIIFD+RPM [24]
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using their Matlab implementation. Results are in the supplementary material,
as it achieved bad results for CF-FA and failed for the IR-OCT-OCTA dataset.

A qualitative IR-OCTA registration result is shown in Fig. 3. RootSIFT ap-
plied to the vessel segmentation predicted by the UNet finds the least number of
correct matches and does not predict an acceptable homography. GLAMpoints
detects more keypoints and matches than SuperPoint, but their registration re-
sults are comparable. The matches of RetinaCraquelureNet are concentrated on
vessel structures resulting in a more precise registration. SuperPoint+SuperGlue
filters out most false matches, but only shows a small number of matches in to-
tal. Our KPVSA-Net, however, detects a larger number of strong matches and
results in a sightly more accurate overlay of the segmented vessels.

4 Conclusion

Our method incorporates prior knowledge of the vessel structure into an end-
to-end trainable pipeline for retinal image registration. Using a graph neural
network for image matching, spatial and visual information is connected to form
a more distinctive descriptor. In the evaluation, our method demonstrates high
registration accuracy for our synthetic retinal dataset and generalizes well for our
real clinical dataset and the public fundus dataset. As there are some small de-
formations of the vessels, which cannot be handled with a perspective transform,
we will look into non-rigid approaches as a further step of investigation.
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