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Abstract. Resting-state functional Magnetic Resonance Imaging (fMRI)
is a powerful imaging technique for studying functional development of
the brain in utero. However, unpredictable and excessive movement of fe-
tuses have limited its clinical applicability. Previous studies have focused
primarily on the accurate estimation of the motion parameters employing
a single step 3D interpolation at each individual time frame to recover
a motion-free 4D fMRI image. Using only information from a 3D spa-
tial neighborhood neglects the temporal structure of fMRI and useful
information from neighboring timepoints. Here, we propose a novel tech-
nique based on four dimensional iterative reconstruction of the motion
scattered fMRI slices. Quantitative evaluation of the proposed method
on a cohort of real clinical fetal fMRI data indicates improvement of
reconstruction quality compared to the conventional 3D interpolation
approaches.

Keywords: Fetal fMRI · image reconstruction · motion-compensated
recovery · regularization.

1 Introduction

Functional magnetic resonance imaging (fMRI) offers a unique means of observ-
ing the functional brain architecture and its variation during development, aging,
or disease. Despite the insights into network formation and functional growth of
the brain,in utero fMRI of living human fetuses, and the developmental func-
tional connectivity (FC), however, remain challenging. Since the fMRI acuisition
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takes several minutes, unconstrained and potentially large movements of the fe-
tuses, uterine contractions, and maternal respiration can cause severe artifacts
such as in-plane blurring, slice cross-talk, and spin-history artifacts that likely
vary over time. Without mitigation, motion artifacts can considerably affect the
image quality, leading to a bias of subsequent conclusions about the FC of the
developing brain.

Standard motion correction approaches, including frame-by-frame spatial re-
alignment along with discarding parts of data with excessive motion, have been
adopted so far to address motion artifacts of in utero fMRI [20,10,17]. More
recently, cascaded slice-to-volume registration [13] combined with spin history
correction [4], and framewise registration based on the 2nd order edge features
instead of raw intensities [11] were suggested. These studies used 3D linear inter-
polation of motion scattered data at each volume independently to reconstruct
the entire time series. Since in utero motion is unconstrained and complex, the
regular grid of observed fMRI volumes becomes a set of irregularly motion scat-
tered points possibly out of the field-of-view of the reconstruction grid, which
might contain gaps in regions with no points in close proximity. Therefore inter-
polation in each 3D volume cannot recover the entire reconstruction grid.

Here we propose a new reconstruction method that takes advantage of the
temporal structure of fMRI time series and rather than treating each frame
independently, it takes both the spatial and the temporal domains into account to
iteratively reconstruct a full 4D in utero fMRI image. The proposed method relies
on super-resolution techniques that attracted increasing attention in structural
fetal T2-weighted imaging, aiming to estimate a 3D high-resolution (HR) volume
from multiple (semi-)orthogonal low resolution scans [5,15,3]. In case of fMRI,
orthogonal acquisitions are not available, instead the reconstruction of a 4D
image from a single sequence acquired over time is desired (An illustration of the
problem is shown in Figure 1). Currently, existing single-image reconstruction
methods are generally proposed for 3D structural MR images with isotropic
voxels, while the effect of motion is implicitly modeled via blurring the desired
HR image [14]. None of these methods have been tailored for 4D fMRI with
high-levels of movement such as the fetal population.

Our contribution is threefold: (1) we develop a 4D optimization scheme based
on low-rank and total variation regularization to reconstruct 4D fMRI data as
a whole (2) we explicitly model the effect of motion in the image degradation
process since it is the main source of gaps between interpolated slices; (3) we
show the performance of our algorithm on the highly anisotropic in utero fMRI
images. Experiments were performed on 20 real individuals, and the proposed
method was compared to various interpolation methods.

2 Method

We first describe the fMRI image acquisition model and then its corresponding
inverse problem formulation to recover a 4D artifact-free fMRI from a single scan
of motion corrupted image, using low-rank and total variation regularizations.
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2.1 The Reconstruction Problem

fMRI requires the acquisition of a number of volumes over time (fMRI time-
series, bold signal) to probe the modulation of spontaneous (or task-related)
neural activity. This activity is characterized by low frequency fluctuations (<
0.1Hz) of bold signals and therefore temporal smoothing is often applied as a pre-
processing step in fMRI analysis. We aim at estimating the motion-compensated

reconstruction of fMRI time series (X ∈ RB̂×K̂×Ĥ×N ) from observed motion-
contaminated fMRI volumes (T ∈ RB×K×H×N ) that integrates temporal smooth-
ing within a full 4D iterative framework. Both X and T are composed of N 3D
volumes Xn,Tn acquired over N timepoints. In MR image acquisition, a degra-
dation process yields a low-resolution image from the latent high-resolution im-
age:

Tn = DSMnXn + z (1)

where D is a 3D downsampling operator, S is a 3D blurring operator, M is the set
of estimated motion parameters (three rotation and three translation parameters
for each slice tn,h ∈ RB×K of the volume Tn, estimated prior to optimization
(Sec. 3.1)), and z represents the observation noise. The application of Mn in the
model here is equivalent to transforming each slice by the motion followed by
resampling them on a 4D regular grid. Successful recovery of X from the T not
only ensures the compensation of motion but also smoother bold signals due to
the implicit temporal structure present in the data. However, since the Eq.(1) is
ill-posed, direct recovery of X is not possible without enforcing a prior. Hence,
the reconstruction of the latent desired 4D image X is achieved by minimizing
the following cost function based on the inverse problem formulation:

min
X

N∑
n=1

‖DSMnXn −Tn‖2 + λ<(X ) (2)

where <(X ) is a spatio-temporal regularization term, and λ balances the contri-
butions of the data fidelity and regularization terms. We propose two regular-
ization terms in this context, 4D low-rank for missing data recovery and total
variation for preserving local spatial consistency.

4D Low-Rank Regularization Rank as a measure of nondegenerateness of
the matrix, is defined by the maximum number of linearly independent rows or
columns in the matrix. Since self-similarity is widely observed in fMRI images,
low rank prior has been successfully used in matrix completion of censored fMRI
time series [1]. Here we use low rank as a regularization term to help retrieve rel-
evant information from all image regions. To compute the rank for a 4D image
X , we first unfold it into a 2D matrix along each dimension [7]. Specifically,
suppose the size of X is B × K × H × N , we unfold it into four 2D matri-
ces

{
X(i), i = 1, 2, 3, 4

}
with size of B × (K ×H ×N) ,K × (B ×H ×N) , H ×

(B ×K ×N), and N × (B ×K ×H) where X(i) means unfold X along dimen-
sion i. Then we compute the sum of the singular values in each matrix for their
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Fig. 1. Illustration of the image reconstruction using super-resolution technique. Over-
sampling exists in case of 3D structural MRI (left panel), however, there is not enough
data for separate reconstruction of each 3D fMRI volume (middle panel). Here we pro-
pose to reconstruct the whole 4D fMRI at once using both spatial and temporal data
structure (right panel).

trace norms
∥∥X(i)

∥∥
tr

. Finally, the rank of X is approximated as the combination
of trace norms of all unfolded matrices [14]:

<rank(X ) =

4∑
i=1

αi
∥∥X(i)

∥∥
tr

(3)

where {αi} are parameters satisfying αi ≥ 0, and
∑4
i=1 αi = 1. By minimizing

this term, we obtain a low-rank approximation of X . The low rank regularization
is applied in the entire 4D data retrieving useful information for the reconstruc-
tion task from both spatial and temporal domains.

Total Variation Regularization Total variation (TV) is defined as integrals
of absolute gradient of the signal. For a 4D functional image X :

<tv(X ) =

N∑
n=1

∫
|∇Xn| dbdkdh (4)

where the gradient operator is performed in 3D spatial space. TV regularization
has been largely adopted in image recovery because of its powerful ability in edge
preservation [15,14]. Here, we use TV in 3D space instead of 4D space based on
the notion that primarily the spatial neighborhood exhibits consistency and thus
TV in temporal domain may not be effective.

2.2 Optimization

The proposed 4D single acquisition reconstruction is thus formulated as below:

min
X

N∑
n=1

‖DSMnXn −Tn‖2 + λrank <rank (X ) + λtv

N∑
n=1

<tv (Xn) (5)



Spatio-temporal reconstruction of fetal fMRI 5

Algorithm 1 4D motion-compensated reconstruction of fMRI time series

Input: Single scan fMRI image T , realignment parameters
Initialize: The desired X by resampling motion-transformed image T with linear

interpolation. Set auxiliary variable Y
(0)
i = 0, U

(0)
i = 0, i = 1, 2, 3, 4

while
∥∥X k −X k−1

∥∥ /‖T ‖ > ε do

Update X k by using gradient descent:

arg minX
∑N
n=1

∥∥∥DSMnX
(k−1)
n −Tn

∥∥∥2+
∑4
i=1

ρ
2

∥∥∥X (k−1) − Y (k−1)
i + U

(k−1)
i

∥∥∥2+

λtv
∑N
n=1

∫ ∣∣∣∇X(k−1)
n

∣∣∣ dbdhdk (7)

Update Y
(k)
i by using Singular Value Thresholding:

Y
(k)
i = foldi

[
SV Tλrankαi/ρ

(
X (k)

(i) + U
(k−1)

i(i)

)]
(8)

with foldi
(
Yi(i)

)
= Yi

Update U
(k)
i = U

(k−1)
i +

(
X (k) − Y (k)

i

)
(9)

end while

We employ the alternating direction method of multipliers (ADMM) algorithm
to minimize the cost function in Eq.(5). ADMM has been proven efficient for solv-
ing optimization problems with multiple non-smooth terms [2]. Briefly, we first

introduce redundant variables {Yi}4i=1 with equality constraints X(i) = Yi(i), and

then use Lagrangian dual variables {Ui}4i=1 to integrate the equality constraints
into the cost function:

minX ,{Yi}4i=1,{Ui}4i=1

∑N
n=1 ‖DSMnXn −Tn‖2 + λrank

∑4
i=1 αi

∥∥Yi(i)∥∥tr
+
∑4
i=1

ρ
2

(
‖X − Yi + Ui‖2 − ‖Ui‖2

)
+ λtv

∑N
n=1

∫
|∇Xn| dbdkdh

(6)

We break the cost function into subproblems for X , Y, and U, and iteratively
update them. The optimization scheme is summarized in Algorithm 1.

3 Experiments and Results

3.1 Data

Data acquisition: Experiments in this study were performed on 20 in utero
fMRI sequences obtained from fetuses between 19 and 39 weeks of gestation.
None of the cases showed any neurological pathology. Pregnant women were
scanned on a 1.5T clinical scanner (Philips Medical Systems, Best, Nether-
lands) using single-shot echo-planar imaging (EPI), and a sensitivity encoding
(SENSE) cardiac coil with five elements. Image matrix size was 144×144, with
1.74×1.74mm2 in-plane resolution, 3mm slice thickness, a TR/TE of 1000/50
ms, and a flip angle of 90°. Each scan contains 96 volumes obtained in an inter-
leaved slice order to minimize cross-talk between adjacent slices.
Preprocessing: For preprocessing, a binary brain mask was manually delin-
eated on the average volume of each fetus and dilated to ensure it covered the
fetal brain through all ranges of the motion. A four dimensional estimate of
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Fig. 2. Reconstruction of in-utero fMRI for a typical fetus, and the estimated slice-
wise realignment parameters. When motion is small (volume No.20) all interpolation
methods recovered a motion compensated volume, and our approach resulted in a
sharper image. In contrast, with strong motion relative to the reference volume (volume
No.65), single step 3D interpolation methods are not able to recover the whole brain,
and parts remain missing, whereas the proposed 4D iterative reconstruction did recover
the entire brain.

the bias field for spatio-temporal signal non-uniformity correction in fMRI series
was obtained using N4ITK algorithm [18] as suggested previously [12]. Intensity
normalization was performed as implemented in mialSRTK toolkit [16]. Finally,
motion parameters were estimated by performing a hierarchical slice-to-volume
registration based on the interleaved factor of acquisition to a target volume
created by automatically finding a set of consecutive volumes of fetal quiescence
and averaging over them [13]. Image registration software package NiftyReg [8]
was used for all motion correction steps in our approach. Demographic infor-
mation of all 20 subjects as well as the maximum motion parameters estimated
were reported in Supplementary Table S1.

3.2 Experimental Setting and Low-Rank Representation

We first evaluated to which extent in utero fMRI data can be characterized
by its low-rank decomposition. The rapid decay of the singular values for a
representative slice of our cohort is shown in Supplementary Figure S1. We used
the top 30, 60, 90, and 120 singular values to reconstruct this slice and measured
signal-to-noise ratio (SNR) to evaluate the reconstruction accuracy. The number
of used singular values determines the rank of the reconstructed image. Using
the top 90 or 120 singular values (out of 144), the reconstructed image does not
show visual differences compared to the original image while it has a relatively
high SNR (Figure S1).

For the full 4D fMRI data of our cohort with the size of 144×144×18×96, four
ranks, one for each unfolded matrix along one dimension is computed. Each is
less than the largest image size 144. These ranks are relatively low in comparison
to the total number of elements, implying in utero fMRI images could be repre-
sented using their low-rank approximations. We set α1 = α2 = α3 = α4 = 1/4
as all dimensions are assumed to be equally important, λrank = 0.01, λtv = 0.01
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were chosen empirically. The algorithm stopped when the difference in iterations
was less than ε = 1e− 5.

3.3 Evaluation of Image Reconstruction

A number of interpolation methods was employed to be compared with our re-
constructed image including linear, cubic spline, and SINC interpolation. For
each method, we applied the same realignment parameters as the ones used
in our model, and in accordance with standard motion correction techniques,
each 3D volumes of fMRI time series was interpolated separately. We quantified
sharpness [9] of the average recovered image, standard deviation of bold signal
fluctuations (SD) through-out the sequence, and the Structural Similarity In-
dex (SSIM) which correlates with the quality of human visual perception [19].
Higher values of sharpness and SSIM, and lower values of SD are indicative of
better recovery.

Figure 2 shows, from left to right, the reference volume, two corresponding
slices in the observed image, and the results of different reconstruction methods.
Volume No.20 exhibits minor motion, volume No.65 exhibits strong motion. The
motion estimate plots on the right show their respective time points. The figure
shows the recovered slices of these two volumes using 3D linear, cubic, SINC, and
the proposed 4D LR+TV method, respectively. In the case of excessive complex

Fig. 3. Evaluation metrics for a typical fetus (a) and the whole cohort (b). Panel
(a) shows an example slice in the average volume (top row) and voxel-wise standard
deviation of the bold signal during fMRI acquisition. Higher Laplacian (sharpness)
and SSIM, and lower standard deviation are indicative of better recovery. Panel (b)
demonstrates these metrics in our fetal dataset.
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Fig. 4. Carpet plot and functional connectivity maps achieved for an example subject
using the observed fMRI time series and the time series recovered by 4D iterative
reconstruction.

motion (30° out of the plane combined with in-plane rotation and translation),
the 3D interpolation methods cannot recover the whole slice as they utilize in-
formation only from the local spatial neighborhoods. The reconstructed slice
by the proposed 4D iterative reconstruction approach recovers the image infor-
mation, is sharper, and preserves more structural detail of the brain. Figure 3
shows a qualitative and quantitative comparison of reconstruction approaches.
Figure 3 (a) shows the average volume (top row), and the standard deviation
of intensity changes over time (bottom row) for one subject. 4D reconstruction
achieves sharper structural detail, and overall reduction of the standard devia-
tion, which is primarily related to motion as described earlier. Although linear
interpolation results in signals as smooth as the proposed method, severe blur-
ring is observed in the obtained image by this approach. Figure 3 (b) provides the
quantitative evaluation for the entire study population. The proposed method
significantly (p<0.01, paired-sample t-tests for each comparison) outperforms all
comparison methods. The average gain of sharpness over the observed image is
2294 in our method compared to 1521 for 3D SINC, 959 for 3D Cubic, and 294 for
3D Linear, and the average reduction of SD relative to the observed image is -17
in our method compared to -9.34 for 3D SINC, -12.70 for 3D Cubic, and -16.50
for 3D Linear. The difference between linear interpolation and our approach did
not reach the statistical significance level for SSIM (p=0.28). In summary, 4D
iterative reconstruction reduces standard deviation over time, while increasing
sharpness and recovered structure, which the 3D approaches failed to achieve.

3.4 Functional Connectivity Analysis

Figure 4 illustrates the impact of the accurate motion correction and reconstruc-
tion for the analysis of functional connectivity (FC) in the fetal population. The
details of the pipeline employed for extracting subject-specific FC maps is ex-
plained in the supplementary material. When using the time series recovered by
our proposed approach for FC analysis, the number of motion-corrupted cor-
relations decreased significantly as visible in the carpet plot of signals, and the
associated connectivity matrix.
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4 Conclusion

In this work, we presented a novel spatio-temporal iterative 4D reconstruction
approach for in-utero fMRI acquired while there is unconstrained motion of
the head. The approach utilizes the self-similarity of fMRI data in the temporal
domain as 4D low-rank regularisation together with total variation regularization
based on spatial coherency of neighboring voxels. Comparative evaluations on
20 fetuses show that this approach yields a 4D signal with low motion induced
standard deviation, and recovery of fine structural detail, outperforming various
3D reconstruction approaches.
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Table S1. Gestational age, motion characteristics, and the achieved values of the evaluation metrics including sharpness (quantified by
Laplacian), standard deviation of BOLD signal fluctuations (SD), and structural similarity index (SSIM) of all fetuses. The proposed
method (LRTV) outperformed other reconstruction methods in terms of sharpness and SD significantly, and the difference between linear
interpolation and our approach did not reach the statistical significance level for SSIM (p=0.28)

GA max trans(mm) max rot(°) Sharpness SD SSIM
(week+day) x y z roll pitch yaw Raw Linear Cubic Sinc LRTV Raw Linear Cubic Sinc LRTV Raw Linear Cubic Sinc LRTV

S1 19w5d 6.87 8.06 2.89 6.17 5.86 4.48 1159 1145 12504 13161 13786 38.29 34.15 34.76 35.40 34.94 0.9682 0.9727 0.9725 0.9721 0.9673
S2 22w5d 21.86 8.11 19.29 27.88 20.63 27.95 9383 9523 10187 10721 11053 77.43 59.11 64.36 68.70 58.26 0.8755 0.9210 0.9109 0.9031 0.9105
S3 28w3d 2.04 1.94 13.73 10.27 17.16 1.51 6610 7352 9094 10251 10282 59.85 46.05 50.09 53.63 45.82 0.8229 0.8807 0.8684 0.8577 0.8673
S4 29w2d 2.39 4.00 6.95 5.18 3.82 2.81 10636 10435 10776 11214 11864 59.38 45.45 50.31 54.59 45.95 0.8046 0.8650 0.8465 0.8323 0.8499
S5 27w1d 7.34 3.93 4.61 1.66 4.09 2.79 6533 9049 9059 9159 9314 59.22 46.85 49.51 52.00 45.98 0.8216 0.8885 0.8825 0.8772 0.8790
S6 25w5d 13.83 5.56 7.84 13.88 25.73 15.54 9134 9379 9977 10428 10979 77.49 56.74 61.79 65.98 55.17 0.8125 0.8758 0.8609 0.8503 0.8679
S7 26w3d 5.97 2.42 2.37 2.23 3.54 2.60 9168 8928 9462 9919 10405 57.61 49.71 52.14 54.56 48.87 0.8519 0.8905 0.8825 0.8742 0.8787
S8 30w2d 3.94 7.45 3.93 16.63 2.34 21.84 8942 8530 9156 9780 10245 75.52 56.02 59.96 63.29 56.57 0.8241 0.8895 0.8789 0.8703 0.8814
S9 29w5d 5.23 6.99 2.24 6.55 5.29 4.95 9753 11573 12698 113751 13786 76.71 53.89 58.10 61.90 53.97 0.7734 0.8618 0.8517 0.8432 0.8487
S10 31w6d 11.12 3.68 3.97 3.06 13.96 4.16 9223 9658 10368 11074 11444 63.67 48.41 53.08 57.19 48.05 0.7821 0.8302 0.8139 0.7999 0.8132
S11 32w4d 3.80 2.00 2.09 2.87 2.49 1.75 8715 8459 9205 9817 9754 69.73 53.88 57.32 60.43 53.78 0.7582 0.8382 0.8255 0.8149 0.8194
S12 29w5d 3.48 3.35 3.33 2.00 2.19 4.69 16344 16142 17332 18436 19875 72.10 55.71 61.49 66.50 55.25 0.7776 0.8570 0.8368 0.8205 0.8389
S13 36w1d 2.17 2.75 3.80 9.54 5.96 6.22 9862 9531 10088 10509 11122 87.33 54.95 58.48 61.65 54.28 0.7041 0.8554 0.8422 0.8302 0.8390
S14 34w5d 42.33 20.62 15.89 7.33 16.43 10.52 9230 9051 10164 11093 12054 64.13 45.16 49.59 53.43 44.74 0.6508 0.7839 0.7529 0.7293 0.7655
S15 23w6d 12.93 12.44 7.42 3.04 4.74 4.29 20016 20999 21363 21625 23388 70.93 55.90 60.42 64.48 55.21 0.8264 0.8904 0.8746 0.8615 0.8756
S16 29w4d 2.83 5.09 3.10 19.82 12.99 21.57 19293 19943 20304 20566 22160 77.39 54.03 58.29 61.99 51.95 0.7637 0.8617 0.8444 0.8314 0.8531
S17 29w3d 20.97 9.18 8.07 7.61 17.55 16.10 11628 11225 11735 12266 13096 79.02 57.64 64.22 69.69 56.74 0.7582 0.8331 0.8114 0.7955 0.8215
S18 24w4d 4.33 5.65 6.13 6.05 3.97 5.04 11628 11225 11735 12266 13096 64.57 53.39 56.06 58.36 52.26 0.8657 0.9084 0.9005 0.8942 0.8955
S19 34w3d 4.48 1.51 12.55 10.16 12.93 3.16 8454 8959 9404 9651 10116 88.02 72.88 74.73 76.55 71.88 0.7576 0.8561 0.8443 0.8344 0.8341
S20 39w2d 0.94 3.78 1.06 3.57 2.95 1.74 17439 17633 17725 17891 21223 70.36 58.90 60.18 61.68 58.92 0.7554 0.8494 0.8443 0.8367 0.8256
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Fig. S1. Low rank approximation of in-utero fMRI of a fetus with gestational age of
34w+4d. Top row shows the original slice, singular-value plot, and zoomed singular-
value plot of indices from 80 to 144. Bottom row shows the four reconstructed slices
and their differences with the original image by using top 30, 60, 90, and 120 singular
values, respectively. SNR values were reported at the bottom of each reconstructed
slices.

Fig. S2. subject-specific functional connectivity analysis was performed in the native
functional space. For this, cortical ROIs were first obtained using an automatic atlas-
based segmentation of T2 scans acquired during the same session as the fMRI, using
a publicly available atlas of fetal brain anatomy [6]. The resulting parcellation con-
sists of 78 ROIs and was mapped to the motion corrected fMRI space using a rigid
transformation. For each parcel, the average time series of all voxels was computed,
and aCompCor nuisance regression and temporal filtering were performed subsequently.
FC matrix was estimated by measuring Pearson’s correlation between the average time
series of parcels.
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