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Abstract. In 2D multi-slice magnetic resonance (MR) acquisition, the
through-plane signals are typically of lower resolution than the in-plane
signals. While contemporary super-resolution (SR) methods aim to recover
the underlying high-resolution volume, the estimated high-frequency
information is implicit via end-to-end data-driven training rather than
being explicitly stated and sought. To address this, we reframe the SR
problem statement in terms of perfect reconstruction filter banks, enabling
us to identify and directly estimate the missing information. In this
work, we propose a two-stage approach to approximate the completion
of a perfect reconstruction filter bank corresponding to the anisotropic
acquisition of a particular scan. In stage 1, we estimate the missing
filters using gradient descent and in stage 2, we use deep networks
to learn the mapping from coarse coefficients to detail coefficients. In
addition, the proposed formulation does not rely on external training data,
circumventing the need for domain shift correction. Under our approach,
SR performance is improved particularly in “slice gap” scenarios, likely
due to the constrained solution space imposed by the framework.
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1 Introduction

Anisotropic magnetic resonance (MR) images are those acquired with high in-
plane resolution and low through-plane resolution. It is common practice to
acquire anisotropic volumes in clinics as it reduces scan time and motion artifacts
while preserving signal-to-noise ratio. To improve through-plane resolution, data-
driven super-resolution (SR) methods have been developed on MR volumes [1,2,
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Fig. 1: The filter bank observation model. Both y and Hy (green) are given and
fixed. In stage 1, filters Hy, ..., Hy—1 and Fy, Fy, ..., Fa—1 (purple) are learned;
in stage 2, a mapping from y to di,...,dpy—1 (gold) is learned.
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7,12]. The application of SR methods to estimate the underlying isotropic volume
has been shown to improve performance on downstream tasks [13].

For 2D multi-slice protocols, the through-plane point-spread function (PSF) is
known as the slice profile. When the sampling step is an integer, the through-plane
signals of an acquired MR image can be modeled as a strided 1D convolution
between the slice profile and the object to be imaged [3,8,10]. Commonly, the
separation between slices is equivalent to the full-width-at-half-max (FWHM) of
the slice profile, but volumes can also be acquired where the slice separation is
less than or greater than the slice profile FWHM, corresponding to “slice overlap”
and “slice gap” scenarios, respectively.

Data-driven SR methods usually simulate low-resolution (LR) data from high-
resolution (HR) data using an assumed slice profile [1,2,7,12], or an estimated
slice profile according to the image data or acquisition [3]. In either case, SR
methods are generally formulated as a classical inverse problem:

y = Az, (1)

where y is the LR observation, A is the degradation matrix, and x is the underlying
HR image. Commonly, this is precisely how paired training data is created for
supervised machine learning methods; HR data is degraded by A to obtain the LR
y and weights 6 of a parameterized function ¢ (e.g., a neural network) are learned
such that ¢g(y) ~ x. However, under this framework there is no specification of
information lost by application of A; contemporary SR models train end-to-end
and are directed only by the dataset.

In our work, we propose an entirely novel SR framework based on perfect
reconstruction (PR) filter banks. From filter bank theory, PR of a signal x is
possible through an M-channel filter bank with a correct design of an analysis
bank H and synthesis bank F' [11]. Under this formulation, we do not change
Eq. 1 but explicitly recognize our observation y as the “coarse approximation”
filter bank coefficients and the missing information necessary to recover x as
the “detail” coefficients (see Fig. 1). For reference, in machine learning jargon,
the analysis bank is an encoder, the synthesis bank is a decoder, and the coarse
approximation and detail coefficients are analogous to a “latent space.”

The primary contribution of this work is to reformulate SR to isotropy of
2D-acquired MR volumes as a filter bank regression framework. The proposed
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framework has several benefits. First, the observed low-frequency information
is untouched in the reconstruction; thus, our method explicitly synthesizes the
missing high frequencies and does not need to learn to preserve acquired low
frequency information. Second, the downsampling factor M specifies the number
of channels in the M-channel filter bank, constraining the solution space in
tougher scenarios such as “slice gap” acquisition recovery. Third, the analysis
filters of PR filter banks necessarily introduce aliasing which is canceled via the
synthesis filters; therefore, we do not need to directly handle the anti-aliasing
of the observed image. Fourth, our architecture has a dynamic capacity for
lower-resolution images. The rationale behind the dynamic capacity is intuitive:
when fewer measurements are taken, more estimates must be done in recovery
and a more robust model is required. Fifth, our method exploits the nature of
anisotropic volumetric data; in-plane slices are HR while through-plane slices are
LR. Thus, we do not rely on external training data and only need the in-plane
HR data to perform internal supervision. In the remainder of the paper, we
describe this framework in detail, provide implementation details, and evaluate
against a state-of-the-art internally supervised SR technique. We demonstrate
the feasibility of formulating SR as filter bank coefficient regression and believe
it lays the foundation for future theoretical and experimental work in SR of MR,
images.

2 Methods

The analysis bank H and synthesis bank F' each consist of M 1D filters represented
in the z-domain as Hy, and F}, respectively, with corresponding spatial domain
representations hy and fi. As illustrated in Fig. 1, input signal X (z) = Z(z)! is
filtered by Hy, then decimated with | M (keeping every M*® entry) to produce
the corresponding coefficients. These coefficients exhibit aliasing and distortion
which are corrected by the synthesis filters [11]. Reconstruction from coefficients
comes from zero-insertion upsampling with 1 M, passing through filters F}, then
summing across the M channels.

Traditional design of M-channel PR filter banks involves a deliberate choice
of a prototype low-pass filter Hy such that modulations and alternations of the
prototype produce the remaining filters for both the analysis and synthesis filter
banks [11]. M is also chosen based on the restrictions of the problem at hand.
However, for anisotropic 2D-acquired MRI, the slice profile is the low-pass filter
and as such we have a fixed, given Hy. The separation between slices is equal
to the FWHM of hg plus any further gap between slices. We denote the slice
separation as M, corresponding to the number of channels in the PR filter bank.
We use A||B, read “A skip B”, to denote a FWHM of A mm and slice gap of
B mm and note that M = A + B. For this preliminary work, we assume A, B,
and M are all integer and, without loss of generality, assume that the in-plane
resolution is 1/|0.

! Z(z) is the Z-transform of = [11].
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Fig. 2: This network architecture, used in the second stage of our algorithm, has
the same structure for both the generator and discriminator but with different
hyperparameters. All convolutional layers used a 3 x 3 kernel. The generator
and discriminator used 16 and 2 residual blocks, respectively. The generator had
128 x M features per convolutional layer while the discriminator had 64 x M
features per convolutional layer. The final convolution outputs M — 1 channels
corresponding to the missing filter bank detail coefficients. The internal structure
of the residual block is encapsulated in green.

Our goal is to estimate filters Hy,..., Hy;—1 and Fy, ..., Fj;—1 and the detail
coefficients dy,...,dpy;—1 which lead to PR of x. We approach this problem in
two stages. In stage 1, we approximate the missing analysis and synthesis filters,
assuming there exists a set of filters to complete the M-channel PR filter bank
given that Hy and M are fixed and known ahead of time. These must be learned
first to establish the approximate PR filter bank conditions on the coefficient
space. Then, in stage 2, we perform a regression on the missing coefficients. Both
of these stages are optimized in a data-driven end-to-end fashion with gradient
descent. After training, our method is applied by regressing dy, ...,dy;—1 from y
and feeding all coefficients through the synthesis bank to produce Z, our estimate
of the HR signal. The stage 2 coefficient regression occurs in 2D, so we construct
our estimate of the 3D volume by averaging stacked 2D predictions from the
synthesis bank from both cardinal planes containing the through-plane axis.

Stage 1: Filter Optimization Previous works assumed the slice profile
is Gaussian with FWHM equal to the slice separation [7,12]; instead, we estimate
the slice profile, Hy, directly with ESPRESO? [3]. We next aim to estimate the
filters Hy,...,Hp—1 and Fy, ..., Fy—1. To achieve this, we learn the spatial
representations hq,...,hp—1 and fo, ..., far—1 from 1D rows and columns drawn
from the high resolution in-plane slices of y, denoted Dy = {z;}¥_,. We initialize
these filters according to a cosine modulation [11] of hg, which is defined as

Fuln] = hufn] = ho[n]\/gcos Kk+ ;) <n+ M; 1) Aﬂ

for k € {1,2,...,M — 1}. Accordingly, we initialize fy to hg. We estimate &;
by passing x; through the analysis and synthesis banks, then (since the entire

2 https://github.com/shuohan/espreso2
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Fig. 3: Estimated PR filters from stage 1 for a single subject at 4|1 resolution
(M =5) in the frequency domain. Note the amplitudes for analysis and synthesis
banks are on different scales, DC is centered, and hy is estimated by ESPRESO [3].

operation is differentiable) step all filters except hg through gradient descent.
The reconstruction error is measured with mean squared error loss and the filters
are updated based on the AdamW [6] optimizer with a learning rate of 0.1, the
one-cycle learning rate scheduler [9], and a batch size of 32 for 100, 000 steps.

Stage 2: Coefficient Regression From stage 1, we have the analysis
and synthesis banks and now want to estimate the missing detail coefficients given
only the LR observation y. With the correct coefficients and synthesis filters, PR
of x is possible. For this stage, we use 2D patches, in spite of the 1D SR problem,
as a type of “neighborhood regularization”. Let Dy = {z;}}¥, z; € RP*PM: je
the training set for stage 2 consists of 2D p x pM patches drawn from the in-plane
slices of y. The second dimension will be decimated by M after passing through
the analysis banks, resulting in y,dy,...,dy—1 € RP*P. We use the analysis
bank (learned in stage 1) to create training pairs {(y;, (d1,da, ..., dn—1)i)}¥,
and fit a convolutional neural network (CNN) G : RP*P — RP*P" ™ to map y;
to (di,...,dp—1):- In this work, we set p = 32. Since this is an image-to-image
translation task, we adopt the widely used approach proposed in Pix2Pix [4]
including the adversarial patch discriminator.

Empirically, we found more learnable parameters are needed with greater M.
Thus, our generator G is a CNN illustrated in Fig. 2 with 16 residual blocks
and 128 x M kernels of size 3 X 3 per convolutional layer. The discriminator D
has the same architecture but with only 2 residual blocks and 64 x M kernels
per convolutional layer. Our final loss function for stage 2 is identical to the loss
proposed in [4] and is calculated on the error in (dy,...,dp—1);- We use the
AdamW optimizer [6] with a learning rate of 10=% and the one-cycle learning
rate scheduler [9] for 500, 000 steps at a batch size of 32.

3 Experiments and Results

Experiments We performed two experiments to evaluate the efficacy of
each stage in our approach. We randomly selected 30 T1-weighted MR brain
volumes from the OASIS-3 dataset [5] to validate both stages and simulated LR
acquisition via convolution with a Gaussian kernel with FWHM € {2,4,6} and
slice gap € {0, 1,2}, yielding nine combinations of FHWM and slice gap in total.
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Fig. 4: Mid-sagittal slice for a representative subject at different resolutions and
gaps for each method. The low resolution column is digitally upsampled with
k-space zero-filling. A||B signifies a slice thickness of A mm and a gap of B mm.
Fourier magnitude is displayed in dB on every other row. The top two rows
correspond to 2[|0 (M = 2) for the MR slice and Fourier space, the second two
rows are for 4|1 (M = 5), and the bottom two rows are for 6|2 (M = 8).
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Table 1: Mean =+ std. dev. of volumetric PSNR values for stage 1 reconstruction of
the 30 subjects. “Self” indicates a reconstruction of the input low-resolution vol-
ume on which the filter bank was optimized, while “GT” indicates reconstruction
of the isotropic ground truth volume. (L-R), (A-P), and (S-I) are the left-to-right,

anterior-to-posterior, and superior-to-inferior directions, respectively.

| Self (L-R) | Self (A-P) | GT (L-R) | GT (A-P) | GT (S-)

2|0 62.24 +£0.97 | 60.19 £3.74 | 60.63 = 0.56 | 59.59 + 2.54 | 55.47 + 4.69
2|1 63.01 +4.91 | 62.25 +5.09 | 64.32 + 0.63 | 59.49 + 5.52 | 53.81 + 6.50
2|2 62.57 +1.59 | 57.93 + 5.32 | 60.62 + 1.34 | 59.31 + 3.65 | 52.09 + 4.34
4]0 55.47 + 3.81 | 52.36 £5.32 | 48.91 £ 4.65 | 48.77 - 4.68 | 44.08 + 4.78
4|1 53.03 +1.54 | 50.31 + 3.41 | 44.19 + 1.57 | 45.65 + 1.63 |44.28 + 2.14
412 54.71 +2.61 | 51.08 +4.51 | 46.75 + 2.83 | 46.39 + 3.27 |43.27 + 2.80
6]]0 49.97 +£1.07 | 40.18 £4.77 | 40.14 £1.35 | 41.04 +1.40 | 35.76 + 3.19
6|1 52.35+0.55 | 45.69 &+ 5.24 | 42.11 +0.84 | 42.74 + 1.25 | 39.76 + 3.47
6]2 53.17 £ 3.17 | 49.11 + 3.41 | 43.66 +=4.12 | 44.87 + 3.99 |41.50 + 2.29
40 x Method 1.0009  * Method
I B-Spline ns N B-Spline
38 “ * = SMgRE 0.975 éﬁ s ns = SMgRE
36 - ns mmm Ours 0.950 & o ns = Ours
£ ‘ o " coms 50.925 -on .
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Fig. 5: Quantitative metrics PSNR in (a) and SSIM in (b), computed over the
30 image volumes. Significance tests are performed between SMORE and our
proposed method with the Wilcoxon signed rank test; * denotes p-values < 0.05;
“ns” stands for “not significant”.
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Since M = A + B for a scan of resolution A||B, M € {2,3,4,5,6,7,8}. For these
experiments, the HR plane was axial while the cardinal LR planes were sagittal
and coronal. We note that both stage 1 and stage 2 are trained for each LR
volume separately as our proposed method does not use external training data,
but instead relies on the inherent anisotropy in the multi-slice volume (i.e., HR
in-plane and LR through-plane data).

Stage 1 Results We trained stage 1 using both cardinal 1D directions
from in-plane data; that is, left-to-right (L-R) and anterior-to-posterior (A-P)
directions. We then performed 1D reconstruction along these cardinal directions
and collated all reconstructions into 3D volumes. In other words, this is an
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evaluation of self-auto-encoding. The mean volumetric reconstruction PSNR +
std. dev. across the 30 subjects is shown in Table 1. In addition to applying
the learned filters to the LR image itself, we would also like to test the extent
of signal recovery for the HR counterpart that is the ground truth (GT) of the
LR volume. Indeed, the coefficients generated by our learned analysis bank are
what we will regress in stage 2, so a reconstruction of the GT is also shown in
the right three columns of Table 1. This serves as a sort of “upper bound” on
our super-resolution estimate and also answers the question of how well internal
training generalizes to reconstruction of an isotropic volume.

We note that if we had attained PR filters, the PSNR would be oo; our
estimates fall short of this. Notably, reconstruction performance drops in the (S-I)
direction; this is likely due to the fact that signals along this direction were not
included in the training data. Additionally, an example of learned filters in the
frequency domain for one resolution, 4||1 (M = 5), is shown in Fig. 3. Recall that
the fixed filter hg is the slice selection profile. We observe that our optimization
approximated bandpass filters.

Stage 2 Results To evaluate stage 2, we compared our method to two
approaches which also do not rely on external training data: cubic b-spline
interpolation and SMORE [12], a state-of-the-art self-super-resolution technique
for anisotropic MR volumes. For a fair comparison and improving SMORE results,
SMORE was trained with the same slice profile that we use (the ESPRESO
estimate [3]) instead of a Gaussian slice profile used in the original paper.

Qualitative results are displayed in Fig. 4 of a mid-sagittal slice for a repre-
sentative subject at 2/|0, 4]|1, and 6]|2. This subject is near the median PSNR
value for that resolution across the 30 subjects evaluated in our experiments and
for which SMORE outperforms our method at 2|0, is on par with our method
at 4/|1, and is outperformed by our method at 6]|2. Also shown in Fig. 4 is the
corresponding Fourier space, and we see that our proposed method includes more
high frequencies than the other methods. For quantitative results, PSNR and
SSIM were calculated on entire volumes, as illustrated in box plots in Fig. 5.

4 Discussion and conclusions

In this paper, we have presented a novel filter bank formulation for SR of 2D-
acquired anisotropic MR volumes as the regression of filter-specified missing
detail coefficients in an M-channel PR filter bank that does not change the
low-frequency sub-bands of the acquired image. We would emphasize that our
approach establishes a new theoretic basis for SR. In theory, these coefficients
exist and give exact recovery of the underlying HR signal. However, it is unknown
whether a mapping of y — (dy,...,dp—1) exists, and whether it is possible to
find filters to complete the analysis and synthesis banks to guarantee PR. In
practice, we estimate these in two stages: stage 1 estimates the missing analysis
and synthesis filters towards PR and stage 2 trains a CNN to regress the missing
detail coefficients given the coarse approximation y. According to our experiments,
as the resolution worsens and slice gap increases our proposed method better



Deep filter bank regression 9

handles the SR task than the competitive approach, validating the usefulness
of our method for super resolving anisotropic MR images with large slice gaps.
Future work will include: 1) deeper investigation into the limits of the training
set in learning the regression; 2) the degree to which the mapping G is valid;
3) more analysis of the super-resolved frequency space; and 4) develop methods
to exactly achieve or better approximate PR. True PR filter banks should greatly
improve the method, as Table 1 serves as a type of “upper bound” for our method;
regardless of the quality of coefficient regression, even given the ideal ground
truth coefficients, reconstruction accuracy would be limited. Furthermore, our
work suffers two major shortcomings. First, our current assumptions are integer
slice thickness and slice separation, which is not always true in reality. To address
this, the use of fractional sampling rates with filter banks [11] may be a promising
research direction. Second, our model in stage 2 scales the number of convolution
kernels per layer by M. This induces a longer training and testing time when the
image is of lower resolution. For reference, SMORE produced the SR volume in
about 86 minutes on a single NVIDIA V100 regardless of the input resolution,
but our proposed method produced the SR volume in 27 minutes for 2||0, 85
minutes for 4]/1, and 127 minutes for 6||2. Additionally, further investigation into
improved regression is needed—a model which can better capture the necessary
aliasing in the coefficient domain is vital for PR.
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