Skip to main content

A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Sparse-view computed tomography (CT) is one of the primary means to reduce the radiation risk. But the reconstruction of sparse-view CT will be contaminated by severe artifacts. By carefully designing the regularization terms, the iterative reconstruction (IR) algorithm can achieve promising results. With the introduction of deep learning techniques, learned regularization terms with convolution neural network (CNN) attracts much attention and can further improve the performance. In this paper, we propose a learned local-nonlocal regularization-based model called RegFormer to reconstruct CT images. Specifically, we unroll the iterative scheme into a neural network and replace handcrafted regularization terms with learnable kernels. The convolution layers are used to learn local regularization with excellent denoising performance. Simultaneously, transformer encoders and decoders incorporate the learned nonlocal prior into the model, preserving the structures and details. To improve the ability to extract deep features during iteration, we introduce an iteration transmission (IT) module, which can further promote the efficiency of each iteration. The experimental results show that our proposed RegFormer achieves competitive performance in artifact reduction and detail preservation compared to some state-of-the-art sparse-view CT reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidky, E.Y., Kao, C.-M., Pan, X.: Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-Ray. Sci. Technol. 14(2), 119–139 (2006)

    Google Scholar 

  2. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)

    Article  Google Scholar 

  3. Yu, G., Li, L., Gu, J., Zhang, L.: Total variation based iterative image reconstruction. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 526–534. Springer, Heidelberg (2005). https://doi.org/10.1007/11569541_53

    Chapter  Google Scholar 

  4. Niu, S., et al.: Sparse-view X-ray CT reconstruction via total generalized variation regularization. Phys. Med. Biol. 59(12), 2997–3017 (2014)

    Article  Google Scholar 

  5. Xu, Q., et al.: Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Article  Google Scholar 

  6. Chen, Y., et al.: Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior. Comput. Med. Imag. Graph. 33(7), 495–500 (2009)

    Article  Google Scholar 

  7. Ma, J., et al.: Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior. Phys. Med. Biol. 57(22), 7519–7542 (2012)

    Article  Google Scholar 

  8. Zhang, Y., et al.: Spectral CT reconstruction with image sparsity and spectral mean. IEEE Trans. Comput. Imaging 2(4), 510–523 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gao, H., Yu, H., Osher, S., Wang, G.: Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM). Inverse Probl. 27(11), 115012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, J.-F., et al.: Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans. Med. Imaging 33(8), 1581–1591 (2014)

    Article  Google Scholar 

  11. Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)

    Article  Google Scholar 

  12. Chen, H., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Exp. 8(2), 679–694 (2017)

    Article  Google Scholar 

  13. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  14. Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis, arXiv preprint arXiv:1611.06391 (2016)

  15. Han, Y., Ye, J.C.: Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans. Med. Imaging 37(6), 1418–1429 (2018)

    Article  Google Scholar 

  16. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  18. Shan, H., et al.: 3-D convolutional encoder-decoder network for lowdose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 37(6), 1522–1534 (2018)

    Article  Google Scholar 

  19. Chen, H., et al.: LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 37(6), 1333–1347 (2018)

    Article  Google Scholar 

  20. Adler, J., Oktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  21. Gupta, H., et al.: CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans. Med. Imaging 37(6), 1440–1453 (2018)

    Article  Google Scholar 

  22. He, J., et al.: Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction. IEEE Trans. Med. Imaging 38(2), 371–382 (2018)

    Article  Google Scholar 

  23. Chun, I.Y., Huang, Z., Lim, H., Fessler, J.: Momentum-Net: fast and convergent iterative neural network for inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  24. Xiang, J., Dong, Y., Yang, Y.: FISTA-Net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging. IEEE Trans. Med. Imaging 40(5), 1329–1339 (2021)

    Article  Google Scholar 

  25. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020)

  26. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  27. Gao, H.: Fused analytical and iterative reconstruction (AIR) via modified proximal forward–backward splitting: a FDK-based iterative image reconstruction example for CBCT. Phys. Med. Biol. 61(19), 7187 (2016)

    Article  Google Scholar 

  28. Chen, G., et al.: AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT. Med. Phys. 47(7), 2916–2930 (2020)

    Article  Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Proceedings of Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. McCollough, C.: TU-FG-207A-04: overview of the low dose CT grand challenge. Med. Phys. 43(6Part35), 3759–3760 (2016)

    Google Scholar 

  31. De Man, B., Basu, S.: Distance-driven projection and backprojection. In: Proceedings of IEEE Nuclear Science Symposium Conference Record, vol. 3, pp. 1477–1480 (2002)

    Google Scholar 

  32. De Man, B., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49(11), 2463–2475 (2004)

    Article  Google Scholar 

  33. Wang, Z., Cun, X., Bao, J., Liu, J.: Uformer: a general u-shaped transformer for image restoration, arXiv preprint arXiv:2106.03106 (2021)

  34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization, arXiv preprint arXiv:1711.05101 (2017)

Download references

Acknowledgements

This work was supported in part by Sichuan Science and Technology Program under Grant 2021JDJQ0024, and in part by Sichuan University ‘From 0 to 1’ Innovative Research Program under grant 2022SCUH0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, W., Yang, Z., Zhou, Q., Lu, Z., Wang, Z., Zhang, Y. (2022). A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics