Skip to main content

Attention-Enhanced Disentangled Representation Learning for Unsupervised Domain Adaptation in Cardiac Segmentation

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

To overcome the barriers of multimodality and scarcity of annotations in medical image segmentation, many unsupervised domain adaptation (UDA) methods have been proposed, especially in cardiac segmentation. However, these methods may not completely avoid the interference of domain-specific information. To tackle this problem, we propose a novel Attention-enhanced Disentangled Representation (ADR) learning model for UDA in cardiac segmentation. To sufficiently remove domain shift and mine more precise domain-invariant features, we first put forward a strategy from image-level coarse alignment to fine removal of remaining domain shift. Unlike previous dual path disentanglement methods, we present channel-wise disentangled representation learning to promote mutual guidance between domain-invariant and domain-specific features. Meanwhile, Hilbert-Schmidt independence criterion (HSIC) is adopted to establish the independence between the disentangled features. Furthermore, we propose an attention bias for adversarial learning in the output space to enhance the learning of task-relevant domain-invariant features. To obtain more accurate predictions during inference, an information fusion calibration (IFC) is also proposed. Extensive experiments on the MMWHS 2017 dataset demonstrate the superiority of our method. Code is available at https://github.com/Sunxy11/ADR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, we simply make fine-tuning on the pre-trained weights without introducing additional complex reconstruction loss, thus facilitating the stable training of the overall model.

References

  1. Bercea, C.I., Wiestler, B., Rueckert, D., Albarqouni, S.: Feddis: disentangled federated learning for unsupervised brain pathology segmentation. arXiv preprint arXiv:2103.03705 (2021)

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of AAAI, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE TMI 39(7), 2494–2505 (2020)

    Google Scholar 

  4. Chen, X., et al.: Diverse data augmentation for learning image segmentation with cross-modality annotations. MedIA 71, 102060 (2021)

    Google Scholar 

  5. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. In: IJCAI, pp. 691–697 (2018)

    Google Scholar 

  6. He, Y., et al.: EnMcGAN: adversarial ensemble learning for 3d complete renal structures segmentation. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 465–477. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_36

    Chapter  Google Scholar 

  7. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  8. Huo, Y., et al.: Synseg-net: synthetic segmentation without target modality ground truth. IEEE TMI 38(4), 1016–1025 (2018)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  10. Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: Proceedings of CVPR, pp. 12975–12984 (2020)

    Google Scholar 

  11. Li, H., Loehr, T., Sekuboyina, A., Zhang, J., Wiestler, B., Menze, B.: Domain adaptive medical image segmentation via adversarial learning of disease-specific spatial patterns. arXiv preprint arXiv:2001.09313 (2020)

  12. Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29

    Chapter  Google Scholar 

  13. Liu, Z., Zhu, Z., Zheng, S., Liu, Y., Zhou, J., Zhao, Y.: Margin preserving self-paced contrastive learning towards domain adaptation for medical image segmentation. IEEE J. Biomed. Health Inf. 26(2), 638–647 (2022)

    Article  Google Scholar 

  14. Ma, Z., et al.: Fine-grained vehicle classification with channel max pooling modified CNNs. IEEE Trans. Veh. Technol. 68(4), 3224–3233 (2019)

    Article  Google Scholar 

  15. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR 9(11) (2008)

    Google Scholar 

  16. Ning, M., et al.: A new bidirectional unsupervised domain adaptation segmentation framework. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 492–503. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_38

    Chapter  Google Scholar 

  17. Shin, S.Y., Lee, S., Summers, R.M.: Unsupervised domain adaptation for small bowel segmentation using disentangled representation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 282–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_27

    Chapter  Google Scholar 

  18. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of CVPR, pp. 7472–7481 (2018)

    Google Scholar 

  19. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  20. Yang, Y., Soatto, S.: Fda: fourier domain adaptation for semantic segmentation. In: Proceedings of CVPR, pp. 4085–4095 (2020)

    Google Scholar 

  21. You, C., Yang, J., Chapiro, J., Duncan, J.S.: Unsupervised Wasserstein distance guided domain adaptation for 3D multi-domain liver segmentation. In: Cardoso, J., et al. (eds.) IMIMIC/MIL3ID/LABELS -2020. LNCS, vol. 12446, pp. 155–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61166-8_17

    Chapter  Google Scholar 

  22. Zhang, W., et al.: Deep learning based torsional nystagmus detection for dizziness and vertigo diagnosis. Biomed. Sig. Process. Control 68, 102616 (2021)

    Article  Google Scholar 

  23. Zheng, S., Zhu, Z., Liu, Z., Guo, Z., Liu, Y., Yang, Y., Zhao, Y.: Multi-modal graph learning for disease prediction. IEEE Trans. Med. Imaging 41(9), 2207–2216 (2022)

    Article  Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  25. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. MedIA 31, 77–87 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Science and Technology Innovation 2030 - New Generation Artificial Intelligence Major Project under Grant No. 2018AAA0102100, Beijing Natural Science Foundation under Grant No. 7222313, and National Natural Science Foundation of China under Grant No. 61976018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Liu, Z., Zheng, S., Lin, C., Zhu, Z., Zhao, Y. (2022). Attention-Enhanced Disentangled Representation Learning for Unsupervised Domain Adaptation in Cardiac Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics