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Abstract. With the development of computational pathology, deep learn-
ing methods for Gleason grading through whole slide images (WSIs)
have excellent prospects. Since the size of WSIs is extremely large, the
image label usually contains only slide-level label or limited pixel-level
labels. The current mainstream approach adopts multi-instance learning
to predict Gleason grades. However, some methods only considering the
slide-level label ignore the limited pixel-level labels containing rich local
information. Furthermore, the method of additionally considering the
pixel-level labels ignores the inaccuracy of pixel-level labels. To address
these problems, we propose a mixed supervision Transformer based on
the multiple instance learning framework. The model utilizes both slide-
level label and instance-level labels to achieve more accurate Gleason
grading at the slide level. The impact of inaccurate instance-level labels
is further reduced by introducing an efficient random masking strategy in
the mixed supervision training process. We achieve the state-of-the-art
performance on the SICAPv2 dataset, and the visual analysis shows the
accurate prediction results of instance level. The source code is available
at https://github.com/bianhao123/Mixed_supervision.

Keywords: Gleason grading· Mixed supervision· Multiple instance learn-
ing.

1 Introduction

Prostate cancer is the second most common cancer in men, with a large number
of new cases every year. For the diagnosis of prostate cancer, whole slide images
(WSIs) are currently the gold standard for clinical diagnosis. Pathologists ana-
lyze WSIs by visual inspection, classify tissue regions, detect the presence of one
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or more Gleason patterns, and ultimately make a diagnosis based on a composite
Gleason score. For example, a composite grade of 5 + 4 = 9 would be assigned to
a sample where the primary Gleason grade is 5 and the secondary is 4. However,
pathologists still face many challenges in Gleason grading: (1) Since WSIs are of
enormous data volume, observation and analysis are time-consuming; (2) WSIs
are of poor quality, with artifacts and tissue folding. Therefore, some machine
learning and deep learning algorithms provide automatic solutions for Gleason
grading. However, due to the long labeling time and the need for professional
medical knowledge in Gleason grading, WSIs usually only contain slide-level la-
bels or some limited pixel-level labels. In addition, the refined pixel-level labels
may be overlapping and inaccurate sometimes.

When only slide-level labels are available, some weakly supervised multiple
instance learning (MIL) algorithms are proposed to predict the slide-level labels
of WSIs automatically. At present, commonly embedding-based MIL methods
can be divided into two categories: attention-based MIL methods [7,10,13], and
correlated MIL methods [12,11,9]. The attention-based MIL method is mainly
based on the bypass attention mechanism, which provides additional contribu-
tion information for each instance through learnable attention weight. Correlated
MIL method mainly includes non-local attention mechanism and self-attention
mechanism. These methods can capture the dependencies between instances by
calculating the attention scores.

When both slide-level label and limited pixel-level labels are available, meth-
ods such as [2,15] are proposed to deal with mixed supervision scenarios, which
can promote the classification performance. However, these mixed supervision
methods do not consider the impact of limited inaccurate pixel-level labels on
model performance.

In this work, we propose a mixed supervision Transformer based on the
MIL framework. First, pixel-level labels are converted into instance-level labels
through the superpixel-based instance feature and label generation. The slide-
level multi-label classification task and the instance-level multi-classification task
are jointly trained in the training process. Second, we adopt an effective ran-
dom masking strategy to avoid the performance loss caused by the inaccurate
instance-level labels. At the same time, we perform 2D sinusoidal position en-
coding on the spatial information of the instance, which is beneficial for the
correlation learning between instances. Our method achieves the best slide-level
classification performance, and the visual analysis shows the instance-level ac-
curacy of the model in Gleason pattern prediction.

2 Method

2.1 Problem Fomulation

Gleason grading is a multi-label MIL classification task. A WSI is regarded
as a bag X, which contains N instances {x1, x2, . . . , xN} and each instance
represents a pixel set with a proper size. The instance-level labels {y1, y2, . . . , yN}
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are unknown, and the bag-level label Y is a ground truth set of ` binary labels
{p1, p2, . . . , p`} , pi ∈ {0, 1}.

In practice, besides slide-level labels, Gleason grading task also has limited
pixel-level labels sometimes. Therefore, based on mixed supervision, it would be
beneficial to improve the accuracy of Gleason grading by effectively utilizing the
two types of labels. However, pixel-level labels may be inaccurate. Therefore,
the mixed supervision of the Gleason grading can be divided into two steps, as
shown in Fig. 1. First, the inaccurate pixel-level labels are employed to get more
reliable instance-level labels. Next, both some instance-level labels and the slide-
level label are utilized for mixed supervision model training. In the following, we
will provide the description of two steps in detail.

Fig. 1. Overview of our proposed method. In the first step, we obtain instance-level
features and labels according to the generated superpixel regions. In the second step,
we adopt a random masking strategy to train a mixed supervision Transformer, which
utilizes both slide-level label and instance-level labels.

2.2 Instance Feature and Label Generation

Although pixel-level labels in Gleason grading are not always accurate, we can
convert the inaccurate pixel-level labels into more reliable instance-level labels.
However, patch-based methods cannot obtain a reliable instance-level label con-
taining same tissue structures within one rectangular patch. Inspired by the
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method in [2], we first filter the blank area and use stain normalization on
different WSIs. Then we employ the simple linear iterative clustering (SLIC) al-
gorithm [1] to extract superpixel tissue regions. The area of each superpixel can
be considered as an instance. Since the superpixel region is generated accord-
ing to the similarity of tissue texture structure, each superpixel region contains
most of the same tissues and has a smoother boundary than the rectangular
block. Therefore, we assign the pixel-level labels with the largest proportion as
the labels of instance-level.

Considering the irregularities and different sizes of the generated superpixel
regions, we extract the instance feature as follows. First, based on the centroid of
each superpixel region, we cut it into one or more patches sized of 224×224. Then,
we employ ImageNet pre-trained mobilenetv2 to extract d dimensional features
(d is 1280). It is worth noting that in the case of cutting out multiple patches,
we average the feature of each patch as the instance-level feature corresponding
to each superpixel region.

2.3 Mixed Supervision Pipeline

This section introduces the training pipeline of mixed supervision. Firstly, a
random masking strategy is employed to generate the unmasking instance tokens.
Then, a mixed supervision Transformer is designed by utilizing both slide-level
label and instance-level labels to achieve more accurate Gleason grading at slide
level.

Radom Masking Strategy For Gleason grading, pixel-level labels may be in-
accurate, which will cause the error in generated instance-level labels and poor
performance of mixed supervision. To assist the training of mixed-supervised net-
work, we adopted an effective sampling strategy (random masking) to optimize
the training process, inspired by MAE [6]. In each training epoch, we sampled
the instance token and corresponding label without replacement according to the
uniform distribution. Therefore, unmasked instance tokensHun = {z1, . . . , zNun

}
are obtained, where Nun = (1 −m) × N, zi ∈ Rd and m is masking ratio. The
uniform distribution sampling ensures that the unmasked instance tokens are
distributed in the entire WSI area, enabling the mixed supervision Transformer
to encode the information of the entire WSI as much as possible. The advan-
tages of random masking strategy are two folds: (1) Reducing the impact of label
inaccuracy. (2) Reducing computation and memory occupation.

Mixed Supervision Transformer The Gleason grading task has slide-level
and instance-level supervision information. The Transformer structure contains
two types of token: class token and instance token, which correspond exactly
to the two types of supervision information in the Gleason grading. Based on
this property, we design the mixed supervision Transformer. The whole structure
can be divided into two branches: slide-level branch and instance-level branch,
corresponding to class token output and instance token output, respectively.
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Algorithm 1: Class Token and Instance Token Calculation

Input: unmasking tokens Hun = {z1, . . . , zNun}, zi ∈ Rd, Hun ∈ RNun×d

Output: class token outputs Ỹ , instance token output ỹ1, . . . , ỹNun

// 1. add 2D spatial position encoding to unmasking token Hun

1 (pi,h, pi,w)← centroid coordinate of each instance zi ;

2 PE(i,pos,2j) = sin
(

pos

10000
2j/dhalf

)
, PE(i,pos,2j+1) = cos

(
pos

10000
2j/dhalf

)
. pos ∈ { pi,h

100
,
pi,w
100
}, dhalf = d

2
, j ∈ [0, dhalf − 1];

3 si ∈ Rd ← CONCAT[PEi,h, PEi,w] . encoding pi,h and pi,w, and
concatenate two-dimensional embeddings;

4 hi ← zi + wsi . add instance token and spatial postion token, w is 0.1;
// 2. correlation learning between instances by Transformer

5 hclass ∈ Rd ← set a learnable class token ;

6 H(0) = {hclass, h1, . . . , hNun} ∈ R(Nun+1)×d . concatenate class token and
instance token ;

7 for l ∈ [0 : 1 : L− 1] do

8 H(l+1) = Transformer(H(l))
9 end

// 3. class token output and instance token output

10 Ỹ ← H(L)[0] . input to slide-level branch;

11 ỹ1, . . . , ỹNun ← H(L)[1], . . . , H(L)[Nun] . input to instance-level branch;

To obtain class token output and instance token ouput, firstly, we encode
the spatial information of unmasking instance tokens. We obtain the centroid
coordinates (px, py) of the superpixel area corresponding to each instance and
encode coordinate information by 2D sinusoidal position encoding [16]. Then,
similar to [5,3,4], we add a learnable class token. The class token and all the
instance tokens are combined and fed into Transformer, which can capture slide-
level and instance-level information, respectively. The detailed calculation of
class token and instance token is shown in Algorithm 1.

The slide-level branch is actually a multi-label classfication task. We use
multi-layer perception to predict Ŷ for the class token output Ỹ . Through the
sigmoid layer, the slide-level loss Lbag is calculated via a multi-label weighted
cross entropy loss function L1 with slide-level label Y :

Lslide = L1(Y, sigmoid(Ŷ )). (1)

For the instance-level branch, since we generate an instance-level label for
each superpixel instance, it is regarded as a multi-category task. So we use
multi-layer perception to predict ŷi for the instance token output ỹi. Through the
softmax layer, the instance-level loss Linstance is calculated by a multi-category
weighted cross entropy loss function L2 with the instance-level label yi:

Linstance = L2(yi, softmax(ŷi)). (2)
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To optimize the model parameters, we minimize the following loss function:

Ltotal = λLslide + (1− λ)
∑
k

Linstance, (3)

where λ ∈ [0, 1], and λ is set to 0.5 in our experiment.

3 Experiments

Dataset We evaluate our method on the SICAPv2 dataset [14] for the Gleason
grading task. SICAPv2 is a public collection of prostate H&E biopsies containing
slide-level labels (i.e., Gleason scores for each slide) and pixel-level annotations
(18783 patches of size 512 × 512). SICAPv2 database includes 155 slides from
95 different patients. The tissue samples are sliced, stained, and digitized by the
Ventana iScan Coreo scanner at 40× magnification. Then the WSIs are obtained
by downsampling to 10× resolution, and Gleason’s total score is assigned for each
slide tissue. The main Gleason grade (GG) distribution in each slide is as follows:
36 noncancerous areas, 40 samples are Gleason grade 3, 64 samples are Gleason
grade 4, and 15 samples are Gleason grade 5 (NC, GG3, GG4, and GG5). We
randomly split the patient data in the ratio of training: validation: test = 60: 15:
25 and use 4-fold cross-validation for all experiments. Due to unbalanced data
distribution, we use the StratifiedKFold method to ensure similar label ratios on
the training, validation, and test sets.

Implementations We implement our method in PyTorch-Lightning and train
it on a single NVIDIA GeForce RTX 3090 24 GB GPU. In the mixed supervision
Transformer, we employ 2 stacked Transformer blocks with 6 heads, and other
configurations are similar to [8]. For 2D sinusoidal position encoding, we set
the maximum pos as 200. And the embedded dimension is set to 1280 as the
instance feature dimension. For the training process, the batch size is 1, and
the grad accumulation step is 8. The Ranger optimizer [17] is employed with a
learning rate of 2e-4 and weight decay of 1e-5. The validation loss is used as the
monitor metric, and the early stopping strategy is adopted, with the patience of
20. We use macro AUC as the evaluation metric.

Baselines We compared our method with attention based methods such as
ABMIL [7], CLAM [10], Loss-Attention [13], corelated based methods such as
DSMIL [9], AttnTrans [11], TransMIL [12], and GNN based method SegGini [2].
In our experiment, we reproduce the baselines’ code in the Pytorch-Lightning
framework based on the existing code. The data processing flow of SegGini is con-
sistent with our method. Other methods follow the CLAM standard processing
step to extract patch features with the patch size of 224. And their parameters
refer to the default parameter template used for segmenting biopsy slides.
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Table 1. Evaluations results on SICAPv2 dataset as Mean± std. The bold font is the
best score and the underline is the second score.

supervision Method AUC

slide-level
supervision

ABMIL[7] 0.6574± 0.0825
CLAM[10] 0.6096± 0.0783
DSMIL[9] 0.5920± 0.0656

LossAttn[13] 0.5778± 0.0484
ATMIL[11] 0.9373± 0.0294

TransMIL[12] 0.9152± 0.0314

Mixed
supervision

SegGini[2] 0.7941± 0.1011
Ours 0.9429± 0.0094

Result and Discussion According to Table 1, the AUCs of some current
SOTA methods, such as ABMIL, CLAM, DSMIL, LossAttn, are ranged from
0.5778 to 0.6574, which is far from satisfaction. The main reason is that Glea-
son grading is a multi-label task, each instance has different categories, and the
correlation between instances should be considered when classifying. The above
methods are based on bypass attention, and the model scale is too small to
efficiently fit the data, so the performance is relatively poor. ATMIL and Trans-
MIL models are Transformer-based models, which mainly adopt the multi-head
self-attention mechanism. These models both consider the correlation between
different instances and achieve better performance. However, the network struc-
ture of above methods does not utilize the instance-level labels, causing the
AUC to be lower than our method from 0.0056 to 0.0277. GNN based method
SegGini is also a mixed supervision method, but it adopts all the instance-level
label, which will be seriously affected by inaccurate labels. The model we pro-
pose employs the random masking strategy and integrates the spatial position
information of the instances in WSIs into the Transformer learning process to
achieve the performance of SOTA (0.9429).

Table 2. Effects of masking instance token ration and spatial position encoding.

w/o spatial position encoding w/ spatial position encoding

masking 0% 0.9273± 0.0103 0.9267± 0.0148
masking 10% 0.9337± 0.0118 0.9405± 0.021
masking 25% 0.9247± 0.0153 0.9415± 0.0163
masking 50% 0.9339± 0.0210 0.9429± 0.0094

only slide label 0.9172± 0.0145 0.9190± 0.0201

According to Table 2, we have the following observations: (1) The perfor-
mance of the model using slide-level label alone is not better than other models
with mixed supervision. It indicates that adding the instance-level label to each
instance token in the Transformer model can improve the slide-level classifi-
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Prediction Generated Instance-level Label

Unlabelled

GG5

GG4

GG3

NC

WSIs Ground Truth

Fig. 2. Gleason pattern prediction visualization.

cation. (2) When random masking ratios are 10%, 25% and 50%, the model’s
performance is about 0.0160 better than using full instance token labels (mask-
ing 0%), which shows that the strategy of random masking is effective. (3) The
spatial position encoding can improve the performance in most experiment set-
tings.

Visual Analysis The motivation of our mixed supervision Transformer is that
the class token corresponds to the slide information, and the instance token
corresponds to the local superpixel information. The combination of these two
types of label can improve the utilization of supervision information. In Fig. 2,
we show the Gleason pattern prediction of the instance-level branch. It can be
seen that the label of each superpixel area can be predicted more accurately.

4 Conclusion

Gleason grading is a multi-label MIL classification task, which has slide-level la-
bels and limited pixel-level labels sometimes. For this task, we propose a method
composed of two steps: (1) instance feature and label generation; (2) mixed su-
pervision Transformer. In the first step, we adopt the SILC algorithm to obtain
more reliable instance-level labels from inaccurate pixel-level labels. In the sec-
ond step, both instance-level labels and slide-level labels are utilized for training
the mixed supervision Transformer model. Besides, we employ the random mask-
ing strategy to further reduce the impact of inaccurate labels. In the SICAPv2
dataset, we achieve state-of-the-art performance. Meanwhile, the visual analy-
sis further shows that the instance-level branch can get more accurate pattern
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prediction. In the future, we will develop more interpretative masking strategies
and optimize our model on larger datasets.
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