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Abstract. Accurate segmentation of retinal fluids in 3D Optical Co-
herence Tomography images is key for diagnosis and personalized treat-
ment of eye diseases. While deep learning has been successful at this
task, trained supervised models often fail for images that do not resem-
ble labeled examples, e.g. for images acquired using different devices.
We hereby propose a novel semi-supervised learning framework for seg-
mentation of volumetric images from new unlabeled domains. We jointly
use supervised and contrastive learning, also introducing a contrastive
pairing scheme that leverages similarity between nearby slices in 3D. In
addition, we propose channel-wise aggregation as an alternative to con-
ventional spatial-pooling aggregation for contrastive feature map projec-
tion. We evaluate our methods for domain adaptation from a (labeled)
source domain to an (unlabeled) target domain, each containing images
acquired with different acquisition devices. In the target domain, our
method achieves a Dice coefficient 13.8% higher than SimCLR (a state-
of-the-art contrastive framework), and leads to results comparable to an
upper bound with supervised training in that domain. In the source do-
main, our model also improves the results by 5.4% Dice, by successfully
leveraging information from many unlabeled images.

1 Introduction

Supervised learning methods, in particular UNet [20], for segmentation of reti-
nal fluids imaged with Optical Coherence Tomography (OCT) devices have
led to major advances in diagnosis, prognosis, and understanding of eye dis-
eases [1,10,11,21,23]. However, training these supervised deep neural networks
requires large amounts of labeled data, which are costly, not always feasible, and
need to be repeated for each problem domain; since trained models often fail
when inference data differs from labeled examples, so-called domain-shift, e.g.
for images from a different OCT device [22]. Unsupervised domain adaptation
aims to leverage information learned from a labeled data domain for applications
in other domains where only unlabeled data is available. To this end, many deep

ar
X

iv
:2

20
3.

03
66

4v
2 

 [
cs

.C
V

] 
 3

 A
ug

 2
02

2



2 Gomariz et al.

learning methods have been proposed [25], mostly using generative adversarial
networks, e.g. to translate visual appearance across OCT devices [19].

Contrastive learning (CL) aims to extract informative features in a self-
supervised manner by comparing (unlabeled) data pairs in a feature subspace of
a network [3,5,6,7,13,14,15,18]. A widely-adopted CL framework, SimCLR [5],
generates positive image pairs from the same image via image augmentations to
minimize feature distances between these pairs, while maximizing their distance
from augmentations of other images as negative samples. Other CL strategies
aim to successfully learn without a need for negative pairs, SimSiam [7] being a
representative example. CL is commonly used for pretraining models, typically
using natural images such as ImageNet [9], which are then finetuned or distilled
for downstream tasks, e.g. classification, detection, or segmentation [6].

Models pretrained with natural images are of limited use for medical appli-
cations, which involve images with substantially different appearances and often
with 3D content, leading to a recent focus on application-specific approaches
for CL pair generation in medical context [4,8]. USCL [8] minimizes the fea-
ture distance between frames of the same ultrasound video, while maximizing
the distance between frames of different videos, in order to produce pretrained
models for ultrasound applications. USCL also proposes a joint semi-supervised
approach, which simultaneously minimizes a contrastive and supervised classi-
fication loss. However, to be applicable for image segmentation, this method
relies on subsequent finetuning, which is potentially sub-optimal for preserving
the unlabeled information for the intended task of segmentation. In fact, there
exist little work on CL methods on image segmentation without finetuning.

We hereby aim to improve segmentation quality of OCT datasets with limited
manual annotations, but with abundant unlabeled data. We focus on unsuper-
vised domain adaptation, where manual annotations exist for one device (source
domain), but not for another (target domain). We achieve this with the following
contributions: • We introduce a semi-supervised framework for joint training of
CL together with segmentation labels (Section 2.1). • We propose an augmen-
tation strategy that leverages expected similarity between nearby slices in 3D
(Section 2.2). • We introduce a new CL projection head (Section 2.3) that ag-
gregates features without losing spatial context, which produces results superior
to the conventional spatial pooling strategy. Our contributions are tested on two
large clinical datasets collected in trials using different OCT imaging devices.

2 Methods

2.1 Simultaneously learning from labeled and unlabeled data

As the segmentation backbone, we utilize the proven UNet architecture [20],
which can be modeled as F (·) processing an image x to produce a segmentation
map p = F (x) to approximate an (expert-annotated) ground truth segmenta-
tion y. In the supervised setting, F is learned by minimizing a supervised loss
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Lsup, which is for us the logarithmic Dice loss of labeled data in a domain D:

Lsup = −
∑

(pi,yi)∈D

log
2
∑

j∈pixels y
j
i p

j
i

ε+
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j∈pixels(y
j
i + pji )

(1)

for all training images i in D, where ε is a small number to avoid division by 0.
Contrastive frameworks aim to learn features h = E(x) with an encoder E(·)

without the need of manually annotated labels y. We herein base our meth-
ods on the SimCLR framework [5]. In order to adapt the learned features h for
our intended segmentation task, we replace the originally-proposed ResNet ar-
chitecture for E(·) with the UNet encoder (illustrated in brown in Fig. 1a). A
subsequent contrastive projection head C(·) maps the bottleneck-layer features
to vector projections z = C(h) on which the contrastive loss Lcon is applied. This
loss aims to minimize the distance between “positive” pairs of images (x′i, x

′′
i )

created from each image xi by a defined pair generator P (·) described further in
Section 2.2 below, i.e. P (xi) = (x′i, x

′′
i ). We employ a version of the normalized

temperature-scaled cross entropy loss [18] adapted to our problem setting as:

LCLR
con =

∑
P (xi), xi∈D

(
l(z′i, z

′′
i ) + l(z′′i , z

′
i)
)

(2)

l(z′i, z
′′
i ) = − log

exp
(
d(z′i, z

′′
i )/τ

)∑
xi∈D 1[k 6=i] exp

(
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′′
k )/τ

) (3)

where d(u, v) = (u · v)/(||u||2 ||v||2) and τ is the temperature scaling parameter.
In SimSiam, a learnable predictor Q(·) is applied on one projection to predict

the other:

LSiam
con = −

∑
xi∈D

(
d
(
Q(z′i), z

′′
i

)
+ d
(
Q(z′′i ), z′i

))
(4)

where the gradients from the second projection pairs are prevented from back-
propagating for network weight updates (stopgrad).

We adapt the USCL joint training strategy, which was proposed for US video
classification, to our segmentation task on 3D images by combining Lsup and
Lcon in a semi-supervised framework illustrated in Fig. 1a. Considering a source
domain Ds and a target domain Dt, total loss L is calculated as follows:

L =
1

2

(
Lcon
x∈Ds

+ Lcon
x∈Dt

)
+ λ Lsup

(x,y)∈Ds

(5)

2.2 Pair generation strategy

Generation of pairs for the contrastive loss is key for successful self-supervised
learning. We herein propose and compare different pair generation functions P (·)
for volumetric OCT images, as illustrated in Fig. 1b.
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Fig. 1. Illustration of our CL methods. (a) Semi-supervised contrastive learning frame-
work for unsupervised domain adaptation. Note that the repel modules do not apply to
SimSiam. (b) Proposed pair generation methods for contrastive learning on 3D images.

We denote by Paugm an OCT adaptation of the pair formation typically
employed for natural images (e.g., in SimCLR and SimSiam). Here, labeled slices
in Ds and random slices in Dt are augmented with horizontal flipping (p = 0.5),
horizontal and vertical translation (within 25% of the image size), zoom in (up
to 50%), and color distortion (brightness up to 60% and jittering up to 20%). For
color augmentation, images are transformed to RGB, and then back to grayscale.

We propose Pslice that leverages the coherence of nearby slices in a 3D volume
for CL. Here, x′i = xi for a slice index b′i in 3D. Then, x′′i is a slice from the
same volume with the (rounded) slide index b′′i ∼ φ(b′i, σ), where φ is a Gaussian
distribution centered on b′i, with standard deviation σ as a hyperparameter.
Combining the two pairing strategies yields Pcomb where Pslice is used first and
the augmentations in Paugm are then applied on the selected slices.

2.3 Projection heads to extract features for image segmentation

A projection head C(·) is formed by an aggregation function ρagg that aggre-
gates features h to form a vector, which is then processed by a multilayer per-
ceptron ρMLP to create projection z. Typical contrastive learning frameworks,
e.g. SimCLR and SimSiam, use a projection (denoted herein by Cpool) where
ρaggpool : Rw×h×c → R1×1×c is a global pooling operation on the width w, height
h, and channels c of the input features. Such projection Cpool may be suboptimal
for learning representations to effectively leverage segmentation information, as
backpropagation from Lcon would lose the spatial context. Instead we propose
Cch, for which ρaggch : Rw×h×c → Rw×h×1 is a 1×1×1 convolutional layer that
learns how to aggregate layers, so the spatial context is preserved.
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3 Experiments and Results

Dataset. We employ two large OCT datasets from clinical trials on patients
with neovascular age-related macular degeneration. Images acquired using a
Spectralis (Heidelberg Engineering) imaging device have 512×496×49 or 768×
496×19 voxels, with a resolution of 10×4×111 or 5×4×221 µm/voxel, respec-
tively. These were acquired as part of the phase-2 AVENUE trial (NCT 02484690).
Images acquired as part of another study, phase-3 HARBOR trial (NCT 00891735),
were acquired with a Cirrus HD-OCT III (Carl Zeiss Meditec) imaging de-
vice, which produces scans with 512 × 128 × 1024 voxels and a resolution of
11.7×47.2×2.0 µm/voxel. All slices (B-scans) from the two different devices are
resampled to 512×512 pixels with roughly the same resolution of 10×4 µm/pixel.
Select B-scans from Spectralis were manually annotated for fluid regions of po-
tential diagnostic value: intraretinal fluid (IRF), subretinal fluid (SRF), pigment
epithelial detachment (PED), and subretinal hyperreflective material (SHRM).
More details on these datasets and the annotation protocol can be found in [17].
In our experiments, we use all training data from Spectralis as source domain
Ds, and unlabeled images from Cirrus as target domain Dt. Labeled data from
Cirrus is only used for the training of an UpperBound model for Dt. Data strat-
ification used in our evaluations is detailed in the supplementary Table S1.

Implementation. Adam optimizer [16] was used in all models, with a learning
rate of 10−3. Dropout with p = 0.5 is applied before and after each convolutional
block in the lowest UNet resolution level, as well as after the convolutions in the
two subsequent resolution levels of the decoder. Group normalization [26] with
4 groups is used after each convolutional layer. After the aggregation function
φ in C(·), two fully-connected layers are used with 128 units each, where the
first one uses ReLU activation. We heuristically set λ = 20 and the standard
deviation of φ for Pslice as σ = 0.25µm, which is the range for which we observe
roughly similar features across slices. Implementation is in Tensorflow 2.7, ran
on an NVIDIA V100 GPU.

Metrics. We segment individual slices with 2D UNet, since (1) only some
slices were annotated in OCT volumes; and (2) this enables our slice-contrasting
scheme. Model performance was evaluated also slice-based, using the Dice coef-
ficient and Unnormalized Volume Dissimilarity (UVD) on 2D slices. The latter
measures the extent of total segmentation error (FP+FN) in each slice and is
more robust to FP on B-scans with small annotated regions for individual classes.
Averaging metrics across classes with a large variation may lead to bias. Thus,
we first normalize each per-slice metric (mc

i ) for method i and class c by its class
Baseline (mc

bas), and then average these over all c and images on the test set.
All models with supervision were trained for 200 epochs, and the model at the
epoch with the highest average Dice coefficient across classes on the validation
set was selected for evaluation on a holdout test set.
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Table 1. Evaluation on target domain Dt and source domain Ds across all classes,
relative to Baseline (rel) and absolute values (abs), in red when metrics are inferior,
and in bold for the best performance (excluding UpperBound). Supervised methods
use labels from the domain in brackets. Dice is shown as %, and UVD as µm3x102.

Approach Methods
Domain Dt Domain Ds

Dice rel (abs) UVD rel (abs) Dice rel (abs) UVD rel (abs)

Supervised
UpperBound[Dt] 29.32 63.88 −8.93 8.67 - - - -

Baseline[Ds] 0.00 34.57 0.00 17.60 0.00 67.36 0.00 5.80

Adversarial
CycleGAN [24] −6.53 28.04 2.51 20.10 −35.13 32.23 7.62 13.42

DAN [2] 17.93 52.49 −5.25 12.34 −0.51 66.85 0.02 5.82

Finetuning
(CL → supervision)

SimCLR [5] 14.01 48.58 −4.24 13.36 −3.48 63.88 0.48 6.28

SimSiam [7] 11.41 45.97 −2.39 15.21 0.40 67.75 0.19 6.00

Joint
(CL + supervision)

SegCLR(Paugm,Cpool) 23.22 57.78 −5.91 11.68 −0.65 66.71 0.00 5.80

SegSiam(Paugm,Cpool) −21.90 12.67 48.09 65.69 −46.58 20.78 48.31 54.11

SegCLR(Pslice,Cpool) 6.14 40.71 −2.81 14.79 −15.14 52.22 2.26 8.06

SegCLR(Pcomb,Cpool) 27.21 61.77 −6.25 11.34 1.48 68.83 0.18 5.98

SegCLR(Pcomb,Cch) 27.77 62.33 −6.71 10.88 1.93 69.28 −0.09 5.71

3.1 Evaluation on the unlabeled target domain

We first evaluate our proposed methods in the desired setting of unsupervised
domain adaptation; i.e. models trained on (x, y) ∈ Ds and x ∈ Dt are evaluated
on y ∈ Dt. Note that, although unlabeled for training, Dt has some ground truth
annotations in the test set to enable its evaluation (see Table S1). In Table 1 and
Table S2, UpperBound results for a supervised model trained on labeled data
from the target domain are also reported for comparison. This labeled data, used
here as a reference, is ablated for all other models. A supervised UNet model,
Baseline, was trained only on the source domain Ds. Its poor performance on Dt

confirms that the two domains indeed differ from supervised learning perspective.
Adversarial approaches are included as state-of-the-art baselines for unsuper-
vised domain adaptation. CycleGAN [24] is adapted to our UNet using entire
slices. Training converged with meaningful translated images from Dt to Ds, on
which we run the pretrained UNet. Domain Adversarial Neural Network (DANN)
includes a gradient reversal layer [12] with the design in [2] for segmentation.
While DANN performs better than Baseline on Dt, CycleGAN is inferior. Our
latter observation is contrary to that reported in [24], which is likely due to our
Baseline being much superior to that of [24] (with a reported Dice of near zero).
Finetuning. Learning representations of Dt with SimCLR and SimSiam with
subsequent finetuning on Ds shows a clear improvement over Baseline for all
classes, confirming that these CL strategies are also valid when adapted to our
OCT dataset. SimCLR produces better results than SimSiam, suggesting that
the use of negative pairs helps in learning better representations in our case.
Joint training using the SimCLR framework and our above changes for a su-
pervised loss for segmentation is herein called SegCLR (SegSiam for the SimSiam
equivalent), which increases the number of parameters merely by 6.85% (7.33%
for SegSiam). SegCLR(Paugm,Cpool) shows an overall improvement over finetun-
ing. This is not the case for SegSiam(Paugm,Cpool), which suggests that the lack
of negative pairs makes it difficult to simultaneously optimize Lsup and Lcon;
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Fig. 2. Evaluation of models for the different classes on (a) target domain Dt and
(b) source domain Ds. Black bars denote 95% confidence intervals.

e.g. minimizing Lcon for only positive pairs may learn only simplistic features,
which then would prevent Lsup from improving features for segmentation.

Pair generation. Pslice alone produces poorer results compared to Paugm alone,
indicating that merely contrasting nearby slices does not facilitate extracting
features useful for segmentation. Nevertheless, by applying both pair generation
methods together, i.e. with Pcomb, Dice and UVD results are overall superior to
all the results above. This indicates that pairing nearby slices in our 3D images
is a good complement to the typical image augmentation strategies.

Projections. We change the typical Cpool head with our proposed Cch designed
specifically for the segmentation task, which adds a mere 0.03% more parameters.
While for IRF and PED (Table S2) this performs worse than SegCLR(Pcomb,Cpool),
the Dice and UVD metrics averaged across classes are overall the best for
SegCLR(Pcomb,Cch), notably even surpassing the UpperBound in some cases
(Fig. 2a). Hence, our proposed model could replace the UpperBound if and
when no training data is available in the target domain, and in doing so only
compromising the performance for PED (Fig. 2a).

3.2 Evaluation on the labeled source domain

Herein we test the retention of segmentation information for the original source
domain Ds, as shown in Table 1 (right-most column) and Fig. 2b. As expected,
Baseline produces better results on Ds than on Dt, since it is evaluated in the
same domain in which it was supervised. For finetuning, contrary to its relative
performance on Dt, for Ds SimSiam produces better results than SimCLR. A
reason could be SimSiam’s use of only positive pairs leading to distinct features
for each domain, which are later finetuned relatively more easily with segmen-
tation supervision on Ds. Further observations on Ds corroborate their above-
discussed counterparts for Dt; i.e. SegSiam fails; Pslice alone performs worse than
Paugm alone; and combining them as Pcomb performs the best. Our proposed
SegCLR(Pcomb,Cch) model produces the best results across classes also for this
source domain Ds, notably even surpassing the supervised Baseline. This shows
that supervised information from the labeled domain is not forgotten (e.g. as a
trade-off when learning from the unlabeled domain), but it is rather enhanced
with the unlabaled data, despite the latter being from a different domain.
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3.3 Ablations on amount of labeled data

We study below the effect that the amount of labeled data in Ds has on the per-
formance of our semi-supervised learning framework. To this end, we randomly
ablate parts of the training data in Ds. The validation set was fixed to avoid
any bias on model selection. Results in Fig. 3 indicate that adding more labeled
data from Ds in the training of our model has overall a positive effect on its
effectiveness for segmentation of the target domain Dt. This is likely because
Lcon can adapt segmentation features to the Dt space only when these features
are learned robustly with more labeled data, based on which Lsup can be mini-
mized. The trend is somewhat the opposite for Ds: For the low data regime, Lcon

seems to help with feature extraction, even though the information comes from
a different domain. However, as the amount of labeled data increases and Lsup

is exposed to enough data from the source domain, any contrastive information
contribution from a different unlabeled domain becomes relatively insignificant.

3.4 Segmentation results compared to inter-grader variability

Manual annotation of retinal fluids is challenging, leading to large variability
in segmentation metrics even among human experts. We herein compare our
proposed SegCLR(Pcomb,Cch) to inter-grader discrepancies. We employ a set of
44 OCT volumes, each fully annotated independently by 4 different graders.
These annotations are drawn from the same target domain Dt but come from a
different clinical study than the dataset used in training, so a direct comparison is
not possible. We evaluated segmentation metrics for graders by comparing them
with one another. We deem our method within inter-grader variability when its
metric for a class and image, with respect to any grader, is better than that of
at least one human inter-grader metric (variation). Across images and classes,
SegCLR(Pcomb,Cch) performs within such inter-grader variability in 65.34% and
48.30% of cases based on Dice and UVD, respectively.
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4 Conclusions

Unsupervised domain adaptation for segmentation has been typically approached
as finetuning on features learned via self-supervision from classification tasks. We
propose herein a segmentation approach that is jointly supervised with existing
data while being self-supervised with abundant unlabeled examples from a pre-
viously unseen domain. With our proposed slice-based pairing and channel-wise
aggregation for contrastive projections, our model successfully adapts supervised
labeled-domain info to an unlabeled domain, surpassing previous state-of-the-art
adversarial methods and even approaching the performance of an upper bound.
We also improve the results in the original labeled domain by leveraging the
unsupervised (contrastive) info. These contributions will help reduce manual
annotation efforts for segmentation of 3D volumes in new data domains.
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Fig. S1. Qualitative assessment of segmentation on Dt and Ds examples.

Table S1. Datasets employed for the training and evaluation of models. Labeled data
for training is displayed as #training+#validation. Volumes from the Spectralis device
were used as both labeled and unlabeled data, i.e. the annotated B-scans were used for
Lsup, while all slices were available as unlabeled data for Lcon. Labeled training data
for Cirrus (denoted in parantheses) is used only for training UpperBound.

Domain Device
Training Testing

Labeled Unlabeled Labeled

B-scans Volumes B-scans Volumes B-scans Volumes

Ds Spectralis 1363+243 234+41 11 466 275 163 28

Dt Cirrus (735+125) (122+21) 6.8 million 53 197 99 17
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Table S2. Evaluation of models on target domain Dt for all 4 annotated classes. This
table corresponds to the results in Fig. 2a. Numbers in bold show the best performance
for each metric and class, with a 2% tolerance, excluding UpperBound. Dice is shown
as %, and UVD as µm3x102.

Method
IRF PED SHRM SRF

Dice UVD Dice UVD Dice UVD Dice UVD

UpperBound[Dt] 69.33 10.44 65.23 7.09 60.03 7.82 60.93 9.32

Baseline[Ds] 32.05 19.44 30.87 16.12 33.06 16.90 42.28 17.92

SimCLR(Paugm,Cpool) 61.79 12.84 47.88 11.42 41.44 16.33 43.21 12.84

SimSiam(Paugm,Cpool) 54.12 16.51 37.41 14.10 40.06 13.99 52.31 16.22

SegCLR(Paugm,Cpool) 63.28 14.29 52.32 12.32 63.63 10.54 51.90 9.57

SegSiam(Paugm,Cpool) 8.31 24.51 4.93 145.44 32.32 17.50 5.11 75.30

SegCLR(Pslice,Cpool) 33.76 18.75 52.92 10.18 41.95 11.87 34.21 18.37

SegCLR(Pcomb,Cpool) 72.20 10.90 61.63 9.40 53.55 12.90 59.70 12.18

SegCLR(Pcomb,Cch) 68.98 11.38 55.40 11.96 62.74 11.17 62.20 9.03

Table S3. Evaluation of models on source domain Ds. This table corresponds to the
results in Fig. 2b. Numbers in bold show the best performance for each metric and
class, with a 2% tolerance. Dice is shown as %, and UVD as µm3x102.

Method
IRF PED SHRM SRF

Dice UVD Dice UVD Dice UVD Dice UVD

Baseline[Ds] 77.15 2.28 71.28 5.55 57.47 7.17 63.53 8.20

SimCLR(Paugm,Cpool) 73.97 2.55 67.44 6.57 53.30 7.36 60.82 8.67

SimSiam(Paugm,Cpool) 79.88 2.24 72.10 5.70 56.41 7.31 62.62 8.73

SegCLR(Paugm,Cpool) 75.33 2.47 71.12 5.18 58.34 6.90 62.04 8.64

SegSiam(Paugm,Cpool) 31.96 4.33 4.88 129.08 44.79 12.69 1.50 70.35

SegCLR(Pslice,Cpool) 52.66 3.10 63.60 9.58 46.22 8.94 46.42 10.63

SegCLR(Pcomb,Cpool) 79.78 2.41 73.28 4.92 57.74 7.99 64.54 8.59

SegCLR(Pcomb,Cch) 80.18 2.48 71.25 5.33 62.12 6.74 63.58 8.29

Table S4. Balance between supervised and contrastive losses. Evaluation of the pro-
posed SegCLR(Pcomb,Cch) model with different values of the weighting parameter λ.
Metrics here are calculated across all classes, relative to the same model with λ=20
used in all other experiments. Very low and high values (i.e., λ = {0.1, 1, 1000}) lead
to substantially worse Dice and UVD metrics on both domains. Values closer to λ=20
(i.e., λ = {10, 100}) have only a minor negative effect on the segmentation metrics.
Dice is shown as %, and UVD as µm3x102.

Dt Ds

λ Dice UVD Dice UVD

0.1 −12.17 1.25 −14.67 2.62

1 −14.84 2.11 −15.20 1.28

10 −4.64 0.57 −1.03 0.28

100 −1.41 −0.03 −0.01 0.26

1000 −8.65 2.01 −2.31 0.31
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