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Abstract

Uncertainty estimation in deep learning has become a leading research field
in medical image analysis due to the need for safe utilisation of AI algorithms
in clinical practice. Most approaches for uncertainty estimation require sam-
pling the network weights multiple times during testing or training multiple
networks. This leads to higher training and testing costs in terms of time and
computational resources. In this paper, we propose Layer Ensembles, a novel
uncertainty estimation method that uses a single network and requires only
a single pass to estimate predictive uncertainty of a network. Moreover, we
introduce an image-level uncertainty metric, which is more beneficial for seg-
mentation tasks compared to the commonly used pixel-wise metrics such as
entropy and variance. We evaluate our approach on 2D and 3D, binary and
multi-class medical image segmentation tasks. Our method shows competitive
results with state-of-the-art Deep Ensembles, requiring only a single network
and a single pass.

1 Introduction

Despite the success of Deep Learning (DL) methods in medical image analysis, their
black-box nature makes it more challenging to gain trust from both clinicians and
patients [26]. Modern DL approaches are unreliable when encountered with new situ-
ations, where a DL model silently fails or produces an overconfident wrong prediction.
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Uncertainty estimation can overcome these common pitfalls, increasing the reliability
of models by assessing the certainty of their prediction and alerting their user about
potentially erroneous reports.

Several methods in the literature address uncertainty estimation in DL [1]. Gen-
eral approaches include: 1) Monte-Carlo Dropout (MCDropout) [7], which requires
several forward passes with enabled dropout layers in the network during test time; 2)
Bayesian Neural Networks (BNN) [6] that directly represent network weights as prob-
ability distributions; and 3) Deep Ensembles (DE) [13] which combines the outputs
of several networks to produce uncertainty estimates. MCDropout and BNN have
been argued to be unreliable in real world datasets [14]. Nonetheless, MCDropout is
one of the most commonly used methods, often favourable when carefully tuned [8].
Despite their inefficiency in terms of memory and time, evidence showed DE is the
most reliable uncertainty estimation method [4, 1].

There have been successful attempts that minimised the cost of training of the
original DE. For example, snapshot-ensembles [12] train a single network until conver-
gence, and further train beyond that point, storing the model weights per additional
epoch to obtain M different models. In doing so, the training time is reduced dras-
tically. However, multiple networks need to be stored and the testing remains the
same as in DE. Additionally, the deep sub-ensembles [23] method uses M segmen-
tation heads on top of a single model. This method is particularly similar to our
proposal – Layer Ensembles (LE). However, LE, in contrast to existing methods,
exhibits the following benefits:

• Scalable, intuitive, simple to train and test. The number of additional pa-
rameters is small compared to BNN approaches that double the number of
parameters;

• Single network compared to the state-of-the-art DE;

• Unlike multi-pass BNN and MCDropout approaches, uncertainties can be cal-
culated using a single forward pass, which would greatly benefit real-time ap-
plications;

• Produces global (image-level) as well as pixel-wise uncertainty measures;

• Allows estimating difficulty of a target sample for segmentation (example diffi-
culty) that could be used to detect outliers;

• Similar performance to DE regarding accuracy and confidence calibration.
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Figure 1: LE built on top of U-Net like architecture. Encoder Block (EB) in orange
and Decoder Block (DB) in green have internal structures as depicted in the boxes
below with corresponding colours. Ten Segmentation Heads (SH) are attached after
each layer output with an up-scaling factor depending on the depth of the layer.
SCSE - Squeeze and Excitation attention module. BN - Batch Normalisation.

2 Methodology

Our method is inspired by the state-of-the-art DE [13] for uncertainty estimation as
well as a more recent work [3] that estimates example difficulty through prediction
depth. In this section, we provide a detailed explanation of how our LE method
differs from other works [13, 3], taking the best from both concepts and introducing
a novel method for uncertainty estimation in DL. Furthermore, we introduce how LE
can be used to obtain a single image-level uncertainty metric that is more useful for
segmentation tasks compared to the commonly used pixel-wise variance, entropy, and
mutual information (MI) metrics.

2.1 Prediction depth

Prediction Depth (PD) [3] measures example difficulty by training k-NN classifiers
using feature maps after each layer. Given a network with N layers, the PD for an
input image x is L ∼ [0, N ] if the k-NN prediction for the Lth layer is different to layer
at L− 1 and the same for all posterior layer predictions. The authors demonstrated
that easy samples have small PD, whereas difficult ones have high PD by linking the
known phenomena in DL that early layers converge faster [15] and networks learn
easy data first [22]. Using PD for estimating example difficulty is appealing, however,
it requires training additional classifiers on top of a pre-trained network. Moreover,
using the traditional Machine Learning classifiers (e.g. k-NN) for a segmentation task
is not trivial.

We extend the idea of PD to a more efficient segmentation method. Instead of k-
NN classifiers, we attach a segmentation head after each layer output in the network
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as shown in Figure 1. We use a CNN following the U-Net [20] architecture with
different modules in the decoder and encoder blocks. Specifically, we use residual
connections [10] in the encoder and squeeze-and-excite attention [11] modules in the
decoder blocks. Our approach is architecture agnostic and the choice of U-Net was
due to its wide use and high performance on different medical image segmentation
tasks.

2.2 Ensembles of networks of different depths

DE has been used widely in the literature for predictive uncertainty estimation.
The original method assumes a collection of M networks with different initialisa-
tion trained with the same data. Then, the outputs of each of these M models can be
used to extract uncertainty measurements (e.g. variance). As we have shown in Fig-
ure 1, ten segmentation heads were added after each layer. Then, LE is a compound
of M sub-networks of different depths. Since each of the segmentation heads is ran-
domly initialised, it is sufficient to cause each of the sub-networks to make partially
independent errors [9]. The outputs from each of the segmentation heads can then
be combined to produce final segmentation and estimate the uncertainties, similarly
to DE. Hence, LE can be considered equivalent to DE, but using only one network
model.

2.3 Layer agreement as an image-level uncertainty metric

As we have stated above, LE is a combination of sub-networks of different depths. It
can also be viewed as stacked networks where the parameters of a network ft is shared
by ft+1 for all t ∈ [0, N), where N is the total number of outputs. This sequential
connection of N sub-networks allows us to observe the progression of segmentation
through the outputs of each segmentation head. We can measure the agreement
between the adjacent layer outputs – e.g. using the Dice coefficient – to obtain a
layer agreement curve. Depending on the network uncertainty, the agreement between
layers will be low, especially in the early layers (Figure 2). We propose to use the
Area Under Layer Agreement curve (AULA) as an image-level uncertainty metric. In
the following sections, we demonstrate that AULA is a good uncertainty measure to
detect poor segmentation quality, both in binary and multi-class problems.

3 Materials and Implementation

We evaluate our proposal on two active medical image segmentation tasks: 1) Breast
mass for binary 2D; and 2) Cardiac MRI for multi-class 3D segmentation. We assess
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Figure 2: Layer Agreement curve. a) A high contrast lesion: large AULA and low
uncertainty. b) A low contrast lesion and calcification pathology is present: small
AULA and higher uncertainty. Arrows represent the correspondence between layers
1 and 2, 2 and 3, etc. DSC – Dice Similarity Coefficient. Green contours are ground
truths.

LE in terms of segmentation accuracy, segmentation quality control using AULA
metric, and example difficulty estimation using PD. For all the experiments, except
for the example difficulty, LE is compared against the state-of-the-art DE approach
and also a plain network without uncertainty estimation (referred as Plain).

3.1 Datasets

We use two publicly available datasets for the selected segmentation problems. Breast
Cancer Digital Repository (BCDR) [16] contains 886 MedioLateral Oblique (MLO)
and CranioCaudal (CC) view mammogram images of 394 patients with manual seg-
mentation masks for masses. Original images have a matrix size of 3328 × 4084 or
2560×3328 pixels (unknown resolution). We crop and re-sample all masses to patches
of 256 × 256 pixels with masses centred in the middle, as done in common practice
[19]. We randomly split the BCDR dataset into train (576), validation (134), and
test (176) sets so that images from the same patient are always in the same set.

For cardiac segmentation, the M&Ms challenge (MnM) [5] dataset is utilised. We
use the same split as in the original challenge – 175 training, 40 validation, and 160
testing. All the images come annotated at the End-Diastolic (ED) and End-Systolic
(ES) phases for the Left Ventricle (LV), MYOcardium (MYO), and Right Ventricle
(RV) heart structures in the short-axis view. In our experiments, both time-points
are evaluated together. All MRI scans are kept in their original in-plane resolution
varying from isotropic 0.85mm to 1.45mm and slice-thickness varying from 0.92mm
to 10mm. We crop the images to 128×128×10 dimensions so that the heart structures
are centred.
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3.2 Training

The same training routine is used for all the experiments, with only exception in
batch-size: 10 for breast mass and 1 for cardiac structure segmentation. The net-
work is trained for 200 epochs using the Adam optimiser to minimise the generalised
Dice [21] and Cross-Entropy (CE) losses for breast mass and cardiac structure seg-
mentation, respectively. For the multi-class segmentation, CE is weighted by 0.1 for
background and 0.3 for each cardiac structure. An initial learning rate of 0.001 is set
with a decay by a factor of 0.5 when the validation loss reaches a plateau. Common
data augmentations are applied including random flip, rotation, and random swap
of mini-patches of size 10 × 10. Images are normalised to have zero-mean and unit
standard deviation. A single NVIDIA GeForce RTX 2080 GPU with 8GB of mem-
ory is used. The source code with dependencies, training, and evaluation is publicly
available1.

3.3 Evaluation

Testing is done using the weights that give the best validation loss during training.
The final segmentation masks are obtained by averaging the outputs of individual
networks in DE (M = 5). For LE, we tried both averaging the sub-network outputs
and using the well-known Simultaneous Truth And Performance Level Estimation
(STAPLE) algorithm [24] that uses weighted voting. Both results were similar and
for brevity we present only the version using STAPLE.

We evaluate LE and DE using the common uncertainty metrics in the literature –
the pixel-wise variance, entropy, and MI, and they are summed for all pixels/voxels in
cases where an image-level uncertainty is required. The AULA metric is used for LE.
The network confidence calibration is evaluated using the Negative Log-Likelihood
metric (NLL). It is a standard measure of a probabilistic model’s quality that penalises
wrong predictions that have small uncertainty [18]. Note that AULA can also be
calculated by skipping some of the initial segmentation heads.

4 Results

4.1 Segmentation performance and confidence calibration

Table 1 compares the segmentation performance of LE with DE and Plain models in
terms of Dice Similarity Coefficient (DSC) and Modified Hausdorff Distance (MHD).
Two-sided paired t-test is used to measure statistically significant differences. In

1Github link will be presented soon.
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Table 1: Segmentation and confidence calibration performance for Plain U-Net, DE,
and LE on BCDR and MnM datasets. The values for DSC, MHD, and NLL are
given as ‘mean(std)’. ↑ - higher is better, ↓ - lower is better. Best values are in bold.
Statistically significant differences compared to LE are indicated by ‘*’.

BCDR – breast mass segmentation MnM – all structures combined

Method DSC ↑ MHD ↓ NLL ↓ DSC ↑ MHD ↓ NLL ↓
Plain *0.865(0.09) *1.429(1.72) *2.312(1.35) 0.900(0.11) 1.061(2.69) 0.182(0.41)
DE 0.870(0.09) 1.373(1.76) *0.615(0.54) *0.896(0.13) 1.465(4.86) *0.157(0.33)
LE 0.872(0.084) 1.317(1.692) 0.306(0.25) 0.903(0.10) 1.302(5.31) 0.173(0.37)

MnM – Structure-wise DSC ↑ MnM – Structure-wise MHD ↓

Method LV MYO RV LV MYO RV
Plain 0.882(0.13) *0.804(0.12) *0.826(0.15) 1.313(3.63) 1.303(2.79) 2.884(10.89)
DE 0.885(0.14) *0.804(0.13) 0.829(0.16) 1.536(5.6) 1.500(3.98) 2.113(5.67)
LE 0.883(0.13) 0.809(0.11) 0.832(0.14) 1.525(5.86) 1.529(5.50) 2.525(8.92)

breast mass segmentation, LE performs similarly to DE and Plain model for both
DSC and MHD metrics. The NLL of LE, however, is significantly better compared
to others (p < 0.001). For cardiac structure segmentation, the combined DSCs for all
methods are similar and MHD of Plain is slightly better. NLL of DE (0.157± 0.33)
is significantly better than ours (0.173 ± 0.37) (p < 0.05), however, LE can achieve
an NLL of 0.140 ± 0.23 by skipping less layers without compromising segmentation
performance (see Figure 3, right). In our experiments, skipping the first three and five
outputs gave the best results in terms of correlation between uncertainty metrics and
segmentation performance for breast mass and cardiac structure tasks, respectively
(see Table 2). Skipping all but the last segmentation head in LE is equivalent to the
Plain network. In terms of structure-wise DSC, all methods are similar for all the
structures. Plain method has a slightly better MHD compared to DE and LE for the
LV and MYO structures (p > 0.05), and DE is better for the RV structure compared
to LE p > 0.05.

The ranking across all metrics in Table 1 are: LE (1.58), DE (2.08), and Plain
(2.33), showing that on average LE is better. Overall, segmentation performance of
all three are similar and LE has a better confidence calibration.

4.2 Segmentation quality control

We evaluate our uncertainty estimation proposal for segmentation quality control,
similarly to [17], and compare it to the state-of-the-art DE. We use the proposed
AULA uncertainty metric to detect poor segmentation masks and the variance metric
for DE. Figure 3 shows the fraction of remaining images with poor segmentation after
a fraction of poor quality segmentation images are flagged for manual correction. We
consider DSCs below 0.90 as poor quality for both segmentation tasks. We set the

7



Table 2: Spearman’s correlation of segmentation metrics with uncertainty metrics for
breast mass and cardiac segmentation tasks. Absolute highest values are shown in
bold.

BCDR MnM

Entropy MI Variance AULA Entropy MI Variance AULA
DE-DSC -0.783 -0.785 -0.785 N/A -0.323 -0.433 -0.377 N/A
LE-DSC 0.615 0.597 0.620 0.785 0.221 0.207 0.203 0.649

DE-MHD 0.762 0.764 0.763 N/A 0.401 0.499 0.447 N/A
LE-MHD -0.594 -0.575 -0.598 -0.730 -0.309 -0.313 -0.300 -0.571

Figure 3: Segmentation quality control for DE and LE. The following are averaged
indicators for: random flagging (dashed black); remaining 5% of poor segmentations
(dotted grey); and ideal line (grey shaded area). The effect of skipping initial
segmentation head outputs on model calibration. Numbers on top of the lines
represent DSC in ‘mean(std)’ format. Shaded areas are standard deviations for NLL.

threshold for the cardiac structure following the inter-operator agreement identified
in [2], and use the same value on the threshold for masses. As proposed in [17], the
areas under these curves can be used to compare different methods. It can be seen
that LE and DE are similar in terms of detecting poor quality segmentations, with LE
achieving slightly better AUC for all the cases – mass, combined and structure-wise
cardiac segmentations. Table 2 supports this statement by confirming high correlation
between AULA and segmentation metrics. In BCDR, both are somewhat close to the
averaged ideal line. For the cardiac structure segmentation, all the curves take a steep
decline, initially being also close to the averaged ideal line indicating that severe cases
are detected faster. Moreover, as can be seen in Figure 4, DE’s uncertainty maps are
overconfident, while LE manages to highlight the difficult areas. We believe that
having such meaningful heatmaps is more helpful for the clinicians (e.g. for manual
correction). More visual examples including entropy and MI are given in Appendix.
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Figure 4: Examples of visual uncertainty heatmaps based on variance for high uncer-
tainty areas (red arrows) using LE (top) and DE (bottom) for breast mass and cardiac
structure segmentation. Black and green contours correspond to ground truth.

4.3 Example difficulty estimation

We evaluate example difficult estimation using PD by perturbing the proportion of
images in the test set. We added random Gaussian noise to MnM dataset and used
Random Convolutions [25] in BCDR as the model was robust to noise in mammo-
gram images. Examples of perturbed images are provided in Appendix. Then, for a
given sample, PD is the largest L corresponding to one of the N segmentation heads
in a network, where the agreement between L and L− 1 is smaller than a threshold
that is the same as in segmentation quality control. In this sense, PD represents the
minimum number of layers after which the network reaches to a consensus segmen-
tation. Figure 5 shows how the distribution of PD shifts towards higher values as

Figure 5: PD distribution with 0%, 50%, and 100% of the images corrupted by
Gaussian noise – MnM N (0.3, 0.7), BCDR Random Convolutions with kernel-size
(37, 37). Layer agreement threshold is 0.90 in terms of DSC for both datasets.
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the number of corrupted images increases in the test set for both BCDR and MnM
datasets. Overall, cardiac structure segmentation is more difficult than breast mass
segmentation while the latter is more robust to noise. This demonstrates how PD can
be used to evaluate example difficulty for the segmentation task and detect outliers.

5 Conclusions

We proposed a novel uncertainty estimation approach that exhibits competitive re-
sults to the state-of-the-art DE method using only a single network. Compared to DE,
our approach produces a more meaningful uncertainty heatmaps and allows estimat-
ing example difficulty in a single pass. Experimental results showed the effectiveness
of the proposed AULA metric to measure an image-level uncertainty measure. The
capabilities of both AULA and PD were demonstrated in segmentation and image
quality control experiments. We believe that the efficient and reliable uncertainty
estimation that LE demonstrates will pave the way for more trustworthy DL appli-
cations in healthcare.
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Appendix

Corrupted image examples to increase prediction depth

Figure 6: Examples of corrupted images and their effect on the entropy map. Black
and green contours correspond to ground truth.
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Qualitative examples

Figure 7: BCDR. Examples of visual uncertainty heatmaps based on variance, en-
tropy, and mutual information. Black and green contours correspond to ground truth.
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Figure 8: MnM. Examples of visual uncertainty heatmaps based on variance, entropy,
and mutual information. Black contours correspond to ground truth.
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